Suppr超能文献

2V-CBCT:基于双正交投影的CBCT重建及利用真实投影数据进行放射治疗剂量计算

2V-CBCT: Two-Orthogonal-Projection Based CBCT Reconstruction and Dose Calculation for Radiation Therapy Using Real Projection Data.

作者信息

Zhang Yikun, Hu Dianlin, Li Wangyao, Zhang Weijie, Chen Gaoyu, Chen Ronald C, Chen Yang, Gao Hao

出版信息

IEEE Trans Med Imaging. 2025 Jan;44(1):284-296. doi: 10.1109/TMI.2024.3439573. Epub 2025 Jan 2.

Abstract

This work demonstrates the feasibility of two-orthogonal-projection-based CBCT (2V-CBCT) reconstruction and dose calculation for radiation therapy (RT) using real projection data, which is the first 2V-CBCT feasibility study with real projection data, to the best of our knowledge. RT treatments are often delivered in multiple fractions, for which on-board CBCT is desirable to calculate the delivered dose per fraction for the purpose of RT delivery quality assurance and adaptive RT. However, not all RT treatments/fractions have CBCT acquired, but two orthogonal projections are always available. The question to be addressed in this work is the feasibility of 2V-CBCT for the purpose of RT dose calculation. 2V-CBCT is a severely ill-posed inverse problem for which we propose a coarse-to-fine learning strategy. First, a 3D deep neural network that can extract and exploit the inter-slice and intra-slice information is adopted to predict the initial 3D volumes. Then, a 2D deep neural network is utilized to fine-tune the initial 3D volumes slice-by-slice. During the fine-tuning stage, a perceptual loss based on multi-frequency features is employed to enhance the image reconstruction. Dose calculation results from both photon and proton RT demonstrate that 2V-CBCT provides comparable accuracy with full-view CBCT based on real projection data.

摘要

这项工作展示了基于双正交投影的锥束CT(2V-CBCT)重建和使用真实投影数据进行放射治疗(RT)剂量计算的可行性,据我们所知,这是第一项使用真实投影数据的2V-CBCT可行性研究。RT治疗通常分多次进行,为此,机载CBCT有助于计算每次分割的剂量,以确保RT治疗质量和进行适应性RT。然而,并非所有的RT治疗/分割都有CBCT数据,但两个正交投影总是可用的。这项工作要解决的问题是2V-CBCT用于RT剂量计算的可行性。2V-CBCT是一个严重不适定的逆问题,对此我们提出了一种从粗到细的学习策略。首先,采用一个能够提取和利用切片间和切片内信息的3D深度神经网络来预测初始3D体积。然后,利用一个2D深度神经网络逐片微调初始3D体积。在微调阶段,采用基于多频特征的感知损失来增强图像重建。光子和质子RT的剂量计算结果表明,基于真实投影数据,2V-CBCT与全视野CBCT具有相当的准确性。

相似文献

本文引用的文献

6
PRIOR: Prior-Regularized Iterative Optimization Reconstruction For 4D CBCT.前置:4D CBCT 的先验正则化迭代重建。
IEEE J Biomed Health Inform. 2022 Nov;26(11):5551-5562. doi: 10.1109/JBHI.2022.3201232. Epub 2022 Nov 10.
9
XctNet: Reconstruction network of volumetric images from a single X-ray image.XctNet:从单张 X 射线图像重建体积图像的重建网络。
Comput Med Imaging Graph. 2022 Jun;98:102067. doi: 10.1016/j.compmedimag.2022.102067. Epub 2022 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验