Suppr超能文献

新型正弦信号辅助多元变分模态分解联合任务相关成分分析以提高基于 SSVEP 的脑机接口性能。

Novel Sinusoidal Signal Assisted Multivariate Variational Mode Decomposition Combined With Task-Related Component Analysis for Enhancing SSVEP-Based BCI Performance.

出版信息

IEEE J Biomed Health Inform. 2024 Nov;28(11):6474-6485. doi: 10.1109/JBHI.2024.3439391. Epub 2024 Nov 6.

Abstract

Brain-computer interfaces (BCIs) based on steady-state visually evoked potential (SSVEP) have a broad application prospect owing to their multiple command output and high performance. Each harmonic component of SSVEP individually contains unique features, which can be utilized to enhance the recognition performance of SSVEP-based BCIs. However, the existing subband analysis methods for SSVEP, including those based on filter banks and existing mode decomposition methods, have limitations in extracting and utilizing independent harmonic components. This study proposes a sinusoidal signal assisted multivariate variational mode decomposition (SA-MVMD) algorithm that allows the constraint of the center frequencies and narrowband filtering structures of the intrinsic mode functions (IMFs) based on the prior frequency knowledge of the signal. It preserves the target information of the signal during decomposition while avoiding mode mixing and incorrect decomposition, thereby enabling the effective extraction of each independent harmonic component of SSVEP. Building on this, a SA-MVMD based task-related component analysis (SA-MVMD-TRCA) method is further proposed to fully utilize the features within the overall SSVEP as well as its independent harmonics, thereby enhancing the recognition performance. Testing on the public SSVEP Benchmark dataset demonstrates that the proposed method significantly outperforms the filter bank-based control methods. This study confirms the effectiveness of SA-MVMD and the potential of this approach, which analyzes and utilizes each independent harmonic of SSVEP, providing new strategies and perspectives for performance enhancement in SSVEP-based BCIs.

摘要

基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 由于其多命令输出和高性能而具有广泛的应用前景。SSVEP 的每个谐波分量都包含独特的特征,可用于提高基于 SSVEP 的 BCI 的识别性能。然而,现有的 SSVEP 子带分析方法,包括基于滤波器组和现有模式分解方法,在提取和利用独立谐波分量方面存在局限性。本研究提出了一种基于正弦信号辅助的多变量变分模态分解 (SA-MVMD) 算法,该算法基于信号的先验频率知识,对固有模态函数 (IMF) 的中心频率和窄带滤波结构进行约束。它在分解过程中保留了信号的目标信息,同时避免了模式混合和不正确的分解,从而能够有效地提取 SSVEP 的每个独立谐波分量。在此基础上,进一步提出了基于正弦信号辅助的变分模态分解相关成分分析 (SA-MVMD-TRCA) 方法,以充分利用 SSVEP 及其独立谐波的整体特征,从而提高识别性能。在公共 SSVEP 基准数据集上的测试表明,所提出的方法显著优于基于滤波器组的控制方法。本研究证实了 SA-MVMD 的有效性以及分析和利用 SSVEP 每个独立谐波的方法的潜力,为基于 SSVEP 的 BCI 的性能提升提供了新的策略和视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验