Suppr超能文献

基于稳态视觉诱发电位的脑机接口中的多变量多频域相关成分分析识别算法及其在机器人控制中的应用

An MVMD-CCA Recognition Algorithm in SSVEP-Based BCI and Its Application in Robot Control.

作者信息

Wang Kang, Zhai Di-Hua, Xiong Yuhan, Hu Leyun, Xia Yuanqing

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 May;33(5):2159-2167. doi: 10.1109/TNNLS.2021.3135696. Epub 2022 May 2.

Abstract

This article proposes a novel recognition algorithm for the steady-state visual evoked potentials (SSVEP)-based brain-computer interface (BCI) system. By combining the advantages of multivariate variational mode decomposition (MVMD) and canonical correlation analysis (CCA), an MVMD-CCA algorithm is investigated to improve the detection ability of SSVEP electroencephalogram (EEG) signals. In comparison with the classical filter bank canonical correlation analysis (FBCCA), the nonlinear and non-stationary EEG signals are decomposed into a fixed number of sub-bands by MVMD, which can enhance the effect of SSVEP-related sub-bands. The experimental results show that MVMD-CCA can effectively reduce the influence of noise and EEG artifacts and improve the performance of SSVEP-based BCI. The offline experiments show that the average accuracies of MVMD-CCA in the training dataset and testing dataset are improved by 3.08% and 1.67%, respectively. In the SSVEP-based online robotic manipulator grasping experiment, the recognition accuracies of the four subjects are 92.5%, 93.33%, 90.83%, and 91.67%, respectively.

摘要

本文提出了一种基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统的新型识别算法。通过结合多变量变分模态分解(MVMD)和典型相关分析(CCA)的优点,研究了一种MVMD-CCA算法,以提高SSVEP脑电图(EEG)信号的检测能力。与经典的滤波器组典型相关分析(FBCCA)相比,MVMD将非线性和非平稳的EEG信号分解为固定数量的子带,这可以增强与SSVEP相关子带的效果。实验结果表明,MVMD-CCA可以有效降低噪声和EEG伪迹的影响,提高基于SSVEP的BCI的性能。离线实验表明,MVMD-CCA在训练数据集和测试数据集中的平均准确率分别提高了3.08%和1.67%。在基于SSVEP的在线机器人操纵器抓取实验中,四名受试者的识别准确率分别为92.5%、93.33%、90.83%和91.67%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验