Li Kangshu, Han Xiaocang, Meng Yuan, Li Junxian, Hong Yanhui, Chen Xiang, You Jing-Yang, Yao Lin, Hu Wenchao, Xia Zhiyi, Ke Guolin, Zhang Linfeng, Zhang Jin, Zhao Xiaoxu
School of Materials Science and Engineering, Peking University, Beijing 100871, China.
DP Technology, Beijing 100080, China.
Nano Lett. 2024 Aug 21;24(33):10275-10283. doi: 10.1021/acs.nanolett.4c02654. Epub 2024 Aug 6.
Defect engineering is widely used to impart the desired functionalities on materials. Despite the widespread application of atomic-resolution scanning transmission electron microscopy (STEM), traditional methods for defect analysis are highly sensitive to random noise and human bias. While deep learning (DL) presents a viable alternative, it requires extensive amounts of training data with labeled ground truth. Herein, employing cycle generative adversarial networks (CycleGAN) and U-Nets, we propose a method based on a single experimental STEM image to tackle high annotation costs and image noise for defect detection. Not only atomic defects but also oxygen dopants in monolayer MoS are visualized. The method can be readily extended to other two-dimensional systems, as the training is based on unit-cell-level images. Therefore, our results outline novel ways to train the model with minimal data sets, offering great opportunities to fully exploit the power of DL in the materials science community.
缺陷工程被广泛用于赋予材料所需的功能。尽管原子分辨率扫描透射电子显微镜(STEM)得到了广泛应用,但传统的缺陷分析方法对随机噪声和人为偏差高度敏感。虽然深度学习(DL)提供了一种可行的替代方案,但它需要大量带有标注真值的训练数据。在此,我们采用循环生成对抗网络(CycleGAN)和U-Net,提出了一种基于单个实验STEM图像的方法,以解决缺陷检测中高标注成本和图像噪声的问题。不仅可以可视化单层MoS中的原子缺陷,还能可视化氧掺杂剂。由于该训练基于晶胞级图像,该方法可以很容易地扩展到其他二维系统。因此,我们的结果概述了用最少数据集训练模型的新方法,为在材料科学界充分利用深度学习的力量提供了巨大机会。