Lee Chia-Hao, Khan Abid, Luo Di, Santos Tatiane P, Shi Chuqiao, Janicek Blanka E, Kang Sangmin, Zhu Wenjuan, Sobh Nahil A, Schleife André, Clark Bryan K, Huang Pinshane Y
Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Nano Lett. 2020 May 13;20(5):3369-3377. doi: 10.1021/acs.nanolett.0c00269. Epub 2020 Apr 16.
Two-dimensional (2D) materials offer an ideal platform to study the strain fields induced by individual atomic defects, yet challenges associated with radiation damage have so far limited electron microscopy methods to probe these atomic-scale strain fields. Here, we demonstrate an approach to probe single-atom defects with sub-picometer precision in a monolayer 2D transition metal dichalcogenide, WSeTe. We utilize deep learning to mine large data sets of aberration-corrected scanning transmission electron microscopy images to locate and classify point defects. By combining hundreds of images of nominally identical defects, we generate high signal-to-noise class averages which allow us to measure 2D atomic spacings with up to 0.2 pm precision. Our methods reveal that Se vacancies introduce complex, oscillating strain fields in the WSeTe lattice that correspond to alternating rings of lattice expansion and contraction. These results indicate the potential impact of computer vision for the development of high-precision electron microscopy methods for beam-sensitive materials.
二维(2D)材料为研究单个原子缺陷所诱导的应变场提供了一个理想平台,然而,与辐射损伤相关的挑战迄今限制了用于探测这些原子尺度应变场的电子显微镜方法。在此,我们展示了一种在单层二维过渡金属二硫属化物WSeTe中以亚皮米精度探测单原子缺陷的方法。我们利用深度学习挖掘大量像差校正扫描透射电子显微镜图像数据集,以定位和分类点缺陷。通过组合数百张名义上相同缺陷的图像,我们生成了高信噪比的类平均图像,这使我们能够以高达0.2皮米的精度测量二维原子间距。我们的方法揭示,硒空位在WSeTe晶格中引入了复杂的振荡应变场,这些应变场对应于晶格膨胀和收缩交替的环。这些结果表明计算机视觉在开发用于对束敏感材料的高精度电子显微镜方法方面的潜在影响。