Suppr超能文献

利用患者人口统计学和统计模型预测全膝关节置换术中的膝关节胫骨部件尺寸。

Using Patient Demographics and Statistical Modeling to Predict Knee Tibia Component Sizing in Total Knee Arthroplasty.

机构信息

Biostatistics and Data Management Group, Department of Clinical Affairs, Zimmer Biomet Inc, Warsaw, IN.

Transformative Technology Team, Department of the Knee Product Segment, Zimmer Biomet Inc, Warsaw, IN.

出版信息

J Arthroplasty. 2018 Jun;33(6):1732-1736. doi: 10.1016/j.arth.2018.01.031. Epub 2018 Jan 31.

Abstract

BACKGROUND

Preoperative planning is important to achieve successful implantation in primary total knee arthroplasty (TKA). However, traditional TKA templating techniques are not accurate enough to predict the component size to a very close range.

METHODS

With the goal of developing a general predictive statistical model using patient demographic information, ordinal logistic regression was applied to build a proportional odds model to predict the tibia component size. The study retrospectively collected the data of 1992 primary Persona Knee System TKA procedures. Of them, 199 procedures were randomly selected as testing data and the rest of the data were randomly partitioned between model training data and model evaluation data with a ratio of 7:3. Different models were trained and evaluated on the training and validation data sets after data exploration.

RESULTS

The final model had patient gender, age, weight, and height as independent variables and predicted the tibia size within 1 size difference 96% of the time on the validation data, 94% of the time on the testing data, and 92% on a prospective cadaver data set.

CONCLUSION

The study results indicated the statistical model built by ordinal logistic regression can increase the accuracy of tibia sizing information for Persona Knee preoperative templating. This research shows statistical modeling may be used with radiographs to dramatically enhance the templating accuracy, efficiency, and quality. In general, this methodology can be applied to other TKA products when the data are applicable.

摘要

背景

在初次全膝关节置换术(TKA)中,术前规划对于实现成功植入至关重要。然而,传统的 TKA 模板技术不够精确,无法非常准确地预测组件尺寸。

方法

本研究旨在使用患者人口统计学信息开发通用预测统计模型,应用有序逻辑回归建立比例优势模型来预测胫骨组件尺寸。该研究回顾性地收集了 1992 例初次 Persona 膝关节系统 TKA 手术的数据。其中,199 例手术被随机选择作为测试数据,其余数据随机分为模型训练数据和模型评估数据,比例为 7:3。在数据探索后,不同的模型在训练和验证数据集上进行了训练和评估。

结果

最终模型的自变量包括患者性别、年龄、体重和身高,在验证数据上,该模型有 96%的时间能够预测出 1 个尺码差异内的胫骨尺寸,在测试数据上有 94%的时间,在前瞻性尸体数据上有 92%的时间。

结论

研究结果表明,有序逻辑回归建立的统计模型可以提高 Persona 膝关节术前模板的胫骨尺寸信息的准确性。本研究表明,统计建模可能与 X 光片结合使用,极大地提高了模板的准确性、效率和质量。一般来说,当数据适用时,这种方法可以应用于其他 TKA 产品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验