Suppr超能文献

基于光谱化学和可解释人工智能的方法,实现对 COVID-19 危重症患者分子水平状态的识别。

Spectrochemical and explainable artificial intelligence approaches for molecular level identification of the status of critically ill patients with COVID-19.

机构信息

Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey.

Department of Internal Medicine, Faculty of Medicine, Bilecik Şeyh Edebali University Bilecik, 11100, Turkey.

出版信息

Talanta. 2024 Nov 1;279:126652. doi: 10.1016/j.talanta.2024.126652. Epub 2024 Jul 31.

Abstract

This study explores the molecular alterations and disease progression in COVID-19 patients using ATR-FTIR spectroscopy combined with spectrochemical and explainable artificial intelligence (XAI) approaches. Blood serum samples from intubated patients (IC), those receiving hospital services (SC), and recovered patients (PC) were analyzed to identify potential spectrochemical serum biomarkers. Spectrochemical parameters such as lipid, protein, nucleic acid concentrations, and IgG glycosylation were quantified, revealing significant alterations indicative of disease severity. Notably, increased lipid content, altered protein concentrations, and enhanced protein phosphorylation were observed in IC patients compared to SC and PC groups. The serum AGR (Albumin/Globulin Ratio) index demonstrated a distinct shift among patient groups, suggesting its potential as a rapid biochemical marker for COVID-19 severity. Additionally, alterations in IgG glycosylation and glucose concentrations were associated with disease severity. Spectral analysis highlighted specific bands indicative of nucleic acid concentrations, with notable changes observed in IC patients. XAI techniques further elucidated the importance of various spectral features in predicting disease severity across patient categories, emphasizing the heterogeneity of COVID-19's impact. Overall, this comprehensive approach provides insights into the molecular mechanisms underlying COVID-19 pathogenesis and offers a transparent and interpretable prediction algorithm to aid decision-making and patient management.

摘要

本研究采用 ATR-FTIR 光谱结合光谱化学和可解释人工智能(XAI)方法,探索 COVID-19 患者的分子变化和疾病进展。分析了插管患者(IC)、接受医院服务的患者(SC)和康复患者(PC)的血清样本,以鉴定潜在的血清光谱生物标志物。定量了脂质、蛋白质、核酸浓度和 IgG 糖基化等光谱化学参数,发现了表明疾病严重程度的显著变化。与 SC 和 PC 组相比,IC 患者的脂质含量增加、蛋白质浓度改变和蛋白质磷酸化增强。血清 AGR(白蛋白/球蛋白比)指数在患者组之间发生明显偏移,表明其可能是 COVID-19 严重程度的快速生化标志物。此外,IgG 糖基化和葡萄糖浓度的变化与疾病严重程度相关。光谱分析突出了指示核酸浓度的特定波段,在 IC 患者中观察到明显变化。XAI 技术进一步阐明了各种光谱特征在预测患者类别中疾病严重程度方面的重要性,强调了 COVID-19 影响的异质性。总的来说,这种综合方法深入了解了 COVID-19 发病机制的分子机制,并提供了一个透明且可解释的预测算法,以帮助决策和患者管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验