Suppr超能文献

相似文献

1
Deep-learning-based design of synthetic orthologs of SH3 signaling domains.
Cell Syst. 2024 Aug 21;15(8):725-737.e7. doi: 10.1016/j.cels.2024.07.005. Epub 2024 Aug 5.
2
A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway.
PLoS Comput Biol. 2020 Sep 14;16(9):e1007815. doi: 10.1371/journal.pcbi.1007815. eCollection 2020 Sep.
7
Multimodal medical image-to-image translation via variational autoencoder latent space mapping.
Med Phys. 2025 Jul;52(7):e17912. doi: 10.1002/mp.17912. Epub 2025 May 29.
8
MyD88 polymerization and association to cellular membranes in a yeast heterologous model.
Cell Mol Life Sci. 2025 Jul 25;82(1):288. doi: 10.1007/s00018-025-05827-1.
9
Forecasting SARS-CoV-2 spike protein evolution from small data by deep learning and regression.
Front Syst Biol. 2024 Apr 9;4:1284668. doi: 10.3389/fsysb.2024.1284668. eCollection 2024.
10
Systematic Humanization of the Yeast Cytoskeleton Discerns Functionally Replaceable from Divergent Human Genes.
Genetics. 2020 Aug;215(4):1153-1169. doi: 10.1534/genetics.120.303378. Epub 2020 Jun 10.

引用本文的文献

1
Considering Metabolic Context in Enzyme Evolution and Design.
Biochemistry. 2025 Aug 19;64(16):3495-3507. doi: 10.1021/acs.biochem.5c00165. Epub 2025 Aug 5.
2
Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics.
JACS Au. 2025 Feb 13;5(2):838-850. doi: 10.1021/jacsau.4c01101. eCollection 2025 Feb 24.
3
How deep can we decipher protein evolution with deep learning models.
Patterns (N Y). 2024 Aug 9;5(8):101043. doi: 10.1016/j.patter.2024.101043.
4
ProtWave-VAE: Integrating Autoregressive Sampling with Latent-Based Inference for Data-Driven Protein Design.
ACS Synth Biol. 2023 Dec 15;12(12):3544-3561. doi: 10.1021/acssynbio.3c00261. Epub 2023 Nov 21.

本文引用的文献

1
Generating tertiary protein structures via interpretable graph variational autoencoders.
Bioinform Adv. 2021 Nov 29;1(1):vbab036. doi: 10.1093/bioadv/vbab036. eCollection 2021.
2
Undersampling and the inference of coevolution in proteins.
Cell Syst. 2023 Mar 15;14(3):210-219.e7. doi: 10.1016/j.cels.2022.12.013. Epub 2023 Jan 23.
3
100th Anniversary of Macromolecular Science Viewpoint: Data-Driven Protein Design.
ACS Macro Lett. 2021 Mar 16;10(3):327-340. doi: 10.1021/acsmacrolett.0c00885. Epub 2021 Feb 8.
4
Machine learning to navigate fitness landscapes for protein engineering.
Curr Opin Biotechnol. 2022 Jun;75:102713. doi: 10.1016/j.copbio.2022.102713. Epub 2022 Apr 9.
5
Protein sequence design with a learned potential.
Nat Commun. 2022 Feb 8;13(1):746. doi: 10.1038/s41467-022-28313-9.
6
Therapeutic enzyme engineering using a generative neural network.
Sci Rep. 2022 Jan 27;12(1):1536. doi: 10.1038/s41598-022-05195-x.
7
Learning the protein language: Evolution, structure, and function.
Cell Syst. 2021 Jun 16;12(6):654-669.e3. doi: 10.1016/j.cels.2021.05.017.
8
Data-driven computational protein design.
Curr Opin Struct Biol. 2021 Aug;69:63-69. doi: 10.1016/j.sbi.2021.03.009. Epub 2021 Apr 25.
9
Advances in machine learning for directed evolution.
Curr Opin Struct Biol. 2021 Aug;69:11-18. doi: 10.1016/j.sbi.2021.01.008. Epub 2021 Feb 26.
10
Generating functional protein variants with variational autoencoders.
PLoS Comput Biol. 2021 Feb 26;17(2):e1008736. doi: 10.1371/journal.pcbi.1008736. eCollection 2021 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验