Suppr超能文献

基于深度学习的 SH3 信号结构域合成同源物的设计。

Deep-learning-based design of synthetic orthologs of SH3 signaling domains.

机构信息

Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.

Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA.

出版信息

Cell Syst. 2024 Aug 21;15(8):725-737.e7. doi: 10.1016/j.cels.2024.07.005. Epub 2024 Aug 5.

Abstract

Evolution-based deep generative models represent an exciting direction in understanding and designing proteins. An open question is whether such models can learn specialized functional constraints that control fitness in specific biological contexts. Here, we examine the ability of generative models to produce synthetic versions of Src-homology 3 (SH3) domains that mediate signaling in the Sho1 osmotic stress response pathway of yeast. We show that a variational autoencoder (VAE) model produces artificial sequences that experimentally recapitulate the function of natural SH3 domains. More generally, the model organizes all fungal SH3 domains such that locality in the model latent space (but not simply locality in sequence space) enriches the design of synthetic orthologs and exposes non-obvious amino acid constraints distributed near and far from the SH3 ligand-binding site. The ability of generative models to design ortholog-like functions in vivo opens new avenues for engineering protein function in specific cellular contexts and environments.

摘要

基于进化的深度生成模型代表了理解和设计蛋白质的一个令人兴奋的方向。一个悬而未决的问题是,这样的模型是否能够学习专门的功能约束,以控制特定生物背景下的适应性。在这里,我们研究了生成模型在产生介导酵母 Sho1 渗透胁迫反应途径信号的Src-homology 3 (SH3) 结构域的合成版本方面的能力。我们表明,变分自动编码器 (VAE) 模型产生的人工序列在实验上再现了天然 SH3 结构域的功能。更一般地说,该模型组织了所有真菌 SH3 结构域,使得模型潜在空间中的局部性(而不仅仅是序列空间中的局部性)丰富了合成直系同源物的设计,并揭示了分布在 SH3 配体结合位点附近和远处的非明显氨基酸约束。生成模型在体内设计类似直系同源物功能的能力为在特定细胞环境和条件下设计蛋白质功能开辟了新途径。

相似文献

本文引用的文献

2
Undersampling and the inference of coevolution in proteins.蛋白质中的欠采样和共进化推断。
Cell Syst. 2023 Mar 15;14(3):210-219.e7. doi: 10.1016/j.cels.2022.12.013. Epub 2023 Jan 23.
4
Machine learning to navigate fitness landscapes for protein engineering.机器学习在蛋白质工程中的应用:探索适应度景观
Curr Opin Biotechnol. 2022 Jun;75:102713. doi: 10.1016/j.copbio.2022.102713. Epub 2022 Apr 9.
8
Data-driven computational protein design.数据驱动的计算蛋白质设计。
Curr Opin Struct Biol. 2021 Aug;69:63-69. doi: 10.1016/j.sbi.2021.03.009. Epub 2021 Apr 25.
9
Advances in machine learning for directed evolution.机器学习在定向进化中的进展。
Curr Opin Struct Biol. 2021 Aug;69:11-18. doi: 10.1016/j.sbi.2021.01.008. Epub 2021 Feb 26.
10
Generating functional protein variants with variational autoencoders.利用变分自动编码器生成功能性蛋白质变体。
PLoS Comput Biol. 2021 Feb 26;17(2):e1008736. doi: 10.1371/journal.pcbi.1008736. eCollection 2021 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验