Suppr超能文献

揭开不对称 DNA 复制的复杂性:核苷酸图谱技术的进展及其他。

Unraveling the complexity of asymmetric DNA replication: Advancements in ribonucleotide mapping techniques and beyond.

机构信息

Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.

Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain; Departamento de Microbiología y Genética (USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.

出版信息

Genomics. 2024 Sep;116(5):110908. doi: 10.1016/j.ygeno.2024.110908. Epub 2024 Aug 5.

Abstract

DNA replication is a fundamental process for cell proliferation, governed by intricate mechanisms involving leading and lagging strand synthesis. In eukaryotes, canonical DNA replication occurs during the S phase of the cell cycle, facilitated by various components of the replicative machinery at sites known as replication origins. Leading and lagging strands exhibit distinct replication dynamics, with leading strand replication being relatively straightforward compared to the complex synthesis of lagging strands involving Okazaki fragment maturation. Central to DNA synthesis are DNA polymerases, with Polα, Polε, and Polδ playing pivotal roles, each specializing in specific tasks during replication. Notably, leading and lagging strands are replicated by different polymerases, contributing to the division of labor in DNA replication. Understanding the enzymology of asymmetric DNA replication has been challenging, with methods relying on ribonucleotide incorporation and next-generation sequencing techniques offering comprehensive insights. These methodologies, such as HydEn-seq, PU-seq, ribose-seq, and emRiboSeq, offer insights into polymerase activity and strand synthesis, aiding in understanding DNA replication dynamics. Recent advancements include novel conditional mutants for ribonucleotide excision repair, enzymatic cleavage alternatives, and unified pipelines for data analysis. Further developments in adapting techniques to different organisms, studying non-canonical polymerases, and exploring new sequencing platforms hold promise for expanding our understanding of DNA replication dynamics. Integrating strand-specific information into single-cell studies could offer novel insights into enzymology, opening avenues for future research and applications in repair and replication biology.

摘要

DNA 复制是细胞增殖的一个基本过程,由涉及前导链和滞后链合成的复杂机制控制。在真核生物中,典型的 DNA 复制发生在细胞周期的 S 期,由复制起点处各种复制机器组件的协助完成。前导链和滞后链的复制具有不同的动力学特征,与涉及冈崎片段成熟的滞后链复杂合成相比,前导链的复制相对简单。DNA 聚合酶是 DNA 合成的核心,Polα、Polε 和 Polδ 发挥着关键作用,它们在复制过程中各自具有特定的任务。值得注意的是,前导链和滞后链是由不同的聚合酶复制的,这有助于 DNA 复制过程中的分工。不对称 DNA 复制的酶学研究一直具有挑战性,依赖于核糖核苷酸掺入和下一代测序技术的方法提供了全面的见解。这些方法,如 HydEn-seq、PU-seq、ribose-seq 和 emRiboSeq,提供了有关聚合酶活性和链合成的见解,有助于理解 DNA 复制动力学。最近的进展包括用于核糖核苷酸切除修复的新型条件突变体、酶切替代物以及用于数据分析的统一管道。进一步开发适应不同生物体的技术、研究非典型聚合酶以及探索新的测序平台有望扩大我们对 DNA 复制动力学的理解。将链特异性信息整合到单细胞研究中可能会为酶学提供新的见解,为修复和复制生物学的未来研究和应用开辟新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验