Suppr超能文献

scMaui:一种广泛适用的深度学习框架,可在存在批次效应和缺失数据的情况下进行单细胞多组学整合。

scMaui: a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data.

机构信息

Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.

Faculty of Mathematics and Informatics, Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany.

出版信息

BMC Bioinformatics. 2024 Aug 6;25(1):257. doi: 10.1186/s12859-024-05880-w.

Abstract

The recent advances in high-throughput single-cell sequencing have created an urgent demand for computational models which can address the high complexity of single-cell multiomics data. Meticulous single-cell multiomics integration models are required to avoid biases towards a specific modality and overcome sparsity. Batch effects obfuscating biological signals must also be taken into account. Here, we introduce a new single-cell multiomics integration model, Single-cell Multiomics Autoencoder Integration (scMaui) based on variational product-of-experts autoencoders and adversarial learning. scMaui calculates a joint representation of multiple marginal distributions based on a product-of-experts approach which is especially effective for missing values in the modalities. Furthermore, it overcomes limitations seen in previous VAE-based integration methods with regard to batch effect correction and restricted applicable assays. It handles multiple batch effects independently accepting both discrete and continuous values, as well as provides varied reconstruction loss functions to cover all possible assays and preprocessing pipelines. We demonstrate that scMaui achieves superior performance in many tasks compared to other methods. Further downstream analyses also demonstrate its potential in identifying relations between assays and discovering hidden subpopulations.

摘要

高通量单细胞测序的最新进展,对能够处理单细胞多组学数据高度复杂性的计算模型提出了迫切需求。需要细致的单细胞多组学整合模型,以避免对特定模态的偏见,并克服稀疏性。还必须考虑掩盖生物信号的批次效应。在这里,我们介绍了一种新的单细胞多组学整合模型,基于变分专家乘积自动编码器和对抗学习的单细胞多组学自动编码器整合(scMaui)。scMaui 根据专家乘积方法计算多个边际分布的联合表示,该方法对于模态中的缺失值特别有效。此外,它克服了以前基于 VAE 的整合方法在批处理效果校正和适用测定方面的局限性。它独立处理多个批次效应,接受离散值和连续值,以及提供各种重构损失函数,以涵盖所有可能的测定和预处理管道。我们证明,与其他方法相比,scMaui 在许多任务中都能实现卓越的性能。进一步的下游分析也表明,它在识别测定之间的关系和发现隐藏的亚群方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a20/11304929/ece15da9aaff/12859_2024_5880_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验