Suppr超能文献

专家混合深度生成模型,用于单细胞多组学数据的综合分析。

A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data.

机构信息

Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

出版信息

Cell Rep Methods. 2021 Sep 15;1(5):100071. doi: 10.1016/j.crmeth.2021.100071. eCollection 2021 Sep 27.

Abstract

The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches.

摘要

单细胞多组学分析的最新进展使得能够在单细胞水平上同时检测多个特征,从而深入了解不同组织中的细胞表型和功能。然而,目前,从复杂的多模态单细胞数据中推断多个模态的联合表示并学习它们之间的关系具有挑战性。在这里,我们提出了 scMM,这是一种基于新型深度生成模型的框架,用于提取可解释的联合表示和跨模态生成。scMM 通过利用专家混合多模态变分自动编码器来解决数据的复杂性。scMM 的伪细胞生成策略弥补了深度学习模型可解释性有限的问题,并且所提出的方法从实验上发现了与潜在维度相关的多模态调节程序。对最近生成的数据集的分析验证了 scMM 可以实现具有丰富可解释性的高分辨率聚类。此外,我们表明,与最先进的方法和传统方法相比,scMM 的跨模态生成可以实现更精确的预测和数据集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b482/9017195/66c67abddc96/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验