CONCEPT, Istituto Italiano di Tecnologia, Via Enrico Melen, 83 Genova Liguria 16152, Italy.
The Abdus Salam International Centre for Theoretical Physics (ICTP), Str. Costiera, 11, Trieste, Friuli-Venezia Giulia, 34151, Italy.
Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae492.
Engineering high-affinity binders targeting specific antigenic determinants remains a challenging and often daunting task, requiring extensive experimental screening. Computational methods have the potential to accelerate this process, reducing costs and time, but only if they demonstrate broad applicability and efficiency in exploring mutations, evaluating affinity, and pruning unproductive mutation paths.
In response to these challenges, we introduce a new computational platform for optimizing protein binders towards their targets. The platform is organized as a series of modules, performing mutation selection and application, molecular dynamics simulations to sample conformations around interaction poses, and mutation prioritization using suitable scoring functions. Notably, the platform supports parallel exploration of different mutation streams, enabling in silico high-throughput screening on High Performance Computing (HPC) systems. Furthermore, the platform is highly customizable, allowing users to implement their own protocols.
The source code is available at https://github.com/pgbarletta/locuaz and documentation is at https://locuaz.readthedocs.io/. The data underlying this article are available at https://github.com/pgbarletta/suppl_info_locuaz.
针对特定抗原决定簇工程高亲和力结合物仍然是一项具有挑战性且常常令人望而却步的任务,需要进行广泛的实验筛选。计算方法有可能加速这一过程,降低成本和时间,但前提是它们在探索突变、评估亲和力和修剪非生产性突变路径方面具有广泛的适用性和效率。
为了应对这些挑战,我们引入了一个新的计算平台,用于优化针对目标的蛋白质结合物。该平台组织为一系列模块,执行突变选择和应用、分子动力学模拟以在相互作用构象周围采样构象、以及使用合适的评分函数进行突变优先级排序。值得注意的是,该平台支持不同突变流的并行探索,允许在高性能计算 (HPC) 系统上进行计算机高通量筛选。此外,该平台具有高度可定制性,允许用户实现自己的协议。
源代码可在 https://github.com/pgbarletta/locuaz 获得,文档可在 https://locuaz.readthedocs.io/ 获得。本文所依据的数据可在 https://github.com/pgbarletta/suppl_info_locuaz 获得。