Suppr超能文献

抗体片段的计算诱变:从ΔΔ预测中分离侧链。

Computational Mutagenesis of Antibody Fragments: Disentangling Side Chains from ΔΔ Predictions.

机构信息

Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy.

The Abdus Salam International Centre for Theoretical Physics─ICTP, Strada Costiera 11, 34151 Trieste, Italy.

出版信息

J Chem Theory Comput. 2024 Mar 26;20(6):2630-2642. doi: 10.1021/acs.jctc.3c01225. Epub 2024 Mar 6.

Abstract

The development of highly potent antibodies and antibody fragments as binding agents holds significant implications in fields such as biosensing and biotherapeutics. Their binding strength is intricately linked to the arrangement and composition of residues at the binding interface. Computational techniques offer a robust means to predict the three-dimensional structure of these complexes and to assess the affinity changes resulting from mutations. Given the interdependence of structure and affinity prediction, our objective here is to disentangle their roles. We aim to evaluate independently six side-chain reconstruction methods and ten binding affinity estimation techniques. This evaluation was pivotal in predicting affinity alterations due to single mutations, a key step in computational affinity maturation protocols. Our analysis focuses on a data set comprising 27 distinct antibody/hen egg white lysozyme complexes, each with crystal structures and experimentally determined binding affinities. Using six different side-chain reconstruction methods, we transformed each structure into its corresponding mutant via in silico single-point mutations. Subsequently, these structures undergo minimization and molecular dynamics simulation. We therefore estimate ΔΔ values based on the original crystal structure, its energy-minimized form, and the ensuing molecular dynamics trajectories. Our research underscores the critical importance of selecting reliable side-chain reconstruction methods and conducting thorough molecular dynamics simulations to accurately predict the impact of mutations. In summary, our study demonstrates that the integration of conformational sampling and scoring is a potent approach to precisely characterizing mutation processes in single-point mutagenesis protocols and crucial for computational antibody design.

摘要

作为结合剂的高效抗体和抗体片段的开发在生物传感和生物治疗等领域具有重要意义。它们的结合强度与结合界面处残基的排列和组成密切相关。计算技术为预测这些复合物的三维结构和评估突变引起的亲和力变化提供了一种强大的手段。鉴于结构和亲和力预测的相互依存关系,我们的目标是将它们的作用分开。我们旨在独立评估六种侧链重建方法和十种结合亲和力估计技术。这种评估对于预测由于单个突变引起的亲和力变化至关重要,这是计算亲和力成熟方案中的关键步骤。我们的分析集中在一个由 27 个不同的抗体/鸡卵清溶菌酶复合物组成的数据集上,每个复合物都有晶体结构和实验确定的结合亲和力。我们使用六种不同的侧链重建方法,通过计算机模拟单点突变将每个结构转化为相应的突变体。然后,这些结构进行最小化和分子动力学模拟。因此,我们根据原始晶体结构、能量最小化形式和随后的分子动力学轨迹来估计 ΔΔ 值。我们的研究强调了选择可靠的侧链重建方法和进行彻底的分子动力学模拟以准确预测突变影响的重要性。总之,我们的研究表明,构象采样和评分的整合是一种精确描述单点突变方案中突变过程的有效方法,对于计算抗体设计至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验