Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
Green Mechanobiology, Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
New Phytol. 2024 Oct;244(1):192-201. doi: 10.1111/nph.20025. Epub 2024 Aug 6.
The devastating pathogen Botrytis cinerea infects a broad spectrum of host plants, causing great socio-economic losses. The necrotrophic fungus rapidly kills plant cells, nourishing their wall and cellular contents. To this end, necrotrophs secrete a cocktail of cell wall degrading enzymes, phytotoxic proteins and metabolites. Additionally, many fungi produce specialized invasion organs that generate high invasive pressures to force their way into the plant cell. However, for most necrotrophs, including Botrytis, the biomechanics of penetration and its contribution to virulence are poorly understood. Here, we use a combination of quantitative micromechanical imaging and CRISPR-Cas-guided mutagenesis to show that Botrytis uses substantial invasive pressure, in combination with strong surface adherence, for penetration. We found that the fungus establishes a unique mechanical geometry of penetration that develops over time during penetration events, and which is actin cytoskeleton dependent. Furthermore, interference of force generation by blocking actin polymerization was found to decrease Botrytis virulence, indicating that also for necrotrophs, mechanical pressure is important in host colonization. Our results demonstrate for the first time mechanistically how a necrotrophic fungus such as Botrytis employs this 'brute force' approach, in addition to the secretion of lytic proteins and phytotoxic metabolites, to overcome plant host resistance.
毁灭性病原体 Botrytis cinerea 感染了广泛的宿主植物,造成了巨大的社会经济损失。这种坏死真菌会迅速杀死植物细胞,吞噬它们的细胞壁和细胞内容物。为此,坏死真菌会分泌出一整套细胞壁降解酶、植物毒性蛋白和代谢物。此外,许多真菌会产生专门的入侵器官,产生高侵入压力,强行进入植物细胞。然而,对于大多数坏死真菌,包括 Botrytis,穿透的生物力学及其对毒性的贡献仍知之甚少。在这里,我们结合定量微观力学成像和 CRISPR-Cas 引导的突变来显示 Botrytis 利用大量的侵入压力,结合强烈的表面附着力来进行穿透。我们发现,真菌在穿透过程中建立了一种独特的机械穿透几何形状,这种形状随着时间的推移而发展,并依赖于肌动蛋白细胞骨架。此外,通过阻止肌动蛋白聚合来干扰力的产生,会降低 Botrytis 的毒性,这表明即使对于坏死真菌,机械压力在宿主定殖中也很重要。我们的研究结果首次从机械角度展示了像 Botrytis 这样的坏死真菌如何除了分泌溶菌蛋白和植物毒性代谢物之外,还采用这种“蛮力”方法来克服植物宿主的抗性。