Suppr超能文献

杂多环芳烃体系:结构-性质关系的数据驱动研究

Hetero-polycyclic aromatic systems: A data-driven investigation of structure-property relationships.

作者信息

Chakraborty Sabyasachi, Mayo Yanes Eduardo, Gershoni-Poranne Renana

机构信息

Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Beilstein J Org Chem. 2024 Jul 31;20:1817-1830. doi: 10.3762/bjoc.20.160. eCollection 2024.

Abstract

Polycyclic aromatic systems (PASs) are pervasive compounds that have a substantial impact in chemistry and materials science. Although their specific structure-property relationships hold the key to the design of new functional molecules, a detailed understanding of these relationships remains elusive. To elucidate these relationships, we performed a data-driven investigation of the newly generated COMPAS-2 dataset, which contains ~500k molecules consisting of 11 types of aromatic and antiaromatic rings and ranging in size from one to ten rings. Our analysis explores the effects of electron count, geometry, atomic composition, and heterocyclic composition on a range of electronic molecular properties of PASs.

摘要

多环芳香体系(PASs)是普遍存在的化合物,在化学和材料科学中具有重大影响。尽管它们特定的结构-性质关系是设计新型功能分子的关键,但对这些关系的详细理解仍然难以捉摸。为了阐明这些关系,我们对新生成的COMPAS-2数据集进行了数据驱动的研究,该数据集包含约50万个分子,由11种芳香环和反芳香环组成,环数从一到十个不等。我们的分析探讨了电子数、几何结构、原子组成和杂环组成对PASs一系列电子分子性质的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b00e/11301039/bb05fb1d5286/Beilstein_J_Org_Chem-20-1817-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验