Staker Joshua, Marshall Kyle, Leswing Karl, Robertson Tim, Halls Mathew D, Goldberg Alexander, Morisato Tsuguo, Maeshima Hiroyuki, Ando Tatsuhito, Arai Hideyuki, Sasago Masaru, Fujii Eiji, Matsuzawa Nobuyuki N
Schrödinger Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States.
Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States.
J Phys Chem A. 2022 Sep 1;126(34):5837-5852. doi: 10.1021/acs.jpca.2c04221. Epub 2022 Aug 19.
Organic semiconductors have many desirable properties including improved manufacturing and flexible mechanical properties. Due to the vastness of chemical space, it is essential to efficiently explore chemical space when designing new materials, including through the use of generative techniques. New generative machine learning methods for molecular design continue to be published in the literature at a significant rate but successfully adapting methods to new chemistry and problem domains remains difficult. These challenges necessitate continual method evaluation to probe method viability for use in alternative applications not covered in the original works. In continuation of our previous work, we evaluate four additional machine-learning-based de novo methods for generating molecules with high predicted hole mobility for use in semiconductor applications. The four generative methods evaluated here are (1) Molecule Deep Q-Networks (MolDQN), which utilizes Deep-Q learning to directly optimize molecular structure graphs for desired properties instead of generating SMILES, (2) Graph-based Genetic Algorithm (GraphGA), which uses a genetic algorithm for optimization where crossovers and mutations are defined in terms of RDKit's reaction SMILES, (3) Generative Tensorial Reinforcement Learning (GENTRL), which is a variational autoencoder (VAE) with a learned prior distribution and optimized using reinforcement learning, and (4) Monte Carlo tree search exploration of chemical space in conjunction with a recurrent neural network (RNN) decoder (ChemTS). The generated molecules were evaluated using density functional theory (DFT) and we discovered better performing molecules with the GraphGA method compared to the other approaches.
有机半导体具有许多理想的特性,包括改进的制造工艺和灵活的机械性能。由于化学空间的广阔性,在设计新材料时,包括通过使用生成技术来有效探索化学空间至关重要。用于分子设计的新的生成式机器学习方法继续以很高的速度在文献中发表,但成功地将方法应用于新的化学和问题领域仍然很困难。这些挑战需要持续的方法评估,以探究方法在原始工作未涵盖的替代应用中的可行性。延续我们之前的工作,我们评估了另外四种基于机器学习的从头生成方法,用于生成具有高预测空穴迁移率的分子,以用于半导体应用。这里评估的四种生成方法是:(1)分子深度Q网络(MolDQN),它利用深度Q学习直接优化分子结构图以获得所需特性,而不是生成SMILES;(2)基于图的遗传算法(GraphGA),它使用遗传算法进行优化,其中交叉和变异是根据RDKit的反应SMILES定义的;(3)生成张量强化学习(GENTRL),它是一种具有学习到的先验分布的变分自编码器(VAE),并使用强化学习进行优化;(4)结合递归神经网络(RNN)解码器(ChemTS)对化学空间进行蒙特卡罗树搜索探索。使用密度泛函理论(DFT)对生成的分子进行评估,我们发现与其他方法相比,GraphGA方法生成的分子性能更好。