Ziehl Tyler Joe, Li Junrui, Sun Shouheng, Zhang Peng
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
Department of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States.
J Phys Chem Lett. 2024 Aug 15;15(32):8306-8314. doi: 10.1021/acs.jpclett.4c01912. Epub 2024 Aug 7.
Bolstered by their unique atomic structures and tailored compositions, nanoalloys exhibit extraordinary properties making them ideal materials to solve challenges in energy storage and conversion catalysis. However, a quantitative description of the structure-property relationships using an accurate descriptor-based model for nanoalloys, ranging from bimetallic to multimetallic compositions, is needed to drive efficient material design toward high-performance catalysis. In this work, we highlight the electronic property and catalytic activity relationship from an element specific -band analysis of Pt-based alloy catalysts using X-ray absorption near-edge spectroscopy (XANES). Using a series of L1-MPt/Pt (M = Fe, Co, Ni) core/shell alloy catalysts with well-defined atomic structures, we quantified subtle differences in the Pt -electron states and correlated the Pt -band structure to their superior catalytic activity toward the oxygen reduction reaction (ORR). Our analysis used the upper -band edge position as a predictive descriptor for the mass activity toward the ORR instead of the commonly used -band center position. Together with density functional theory calculations and Nørskov -band theory, the upper -band edge position for the Pt states, derived from experimental measurements, elucidates new physical insights into the ORR performance of the L1-MPt/Pt core/shell catalysts. An element specific Pt -band analysis using XANES overcomes challenges in traditional X-ray photoelectron spectroscopy-based valence -band analysis, which cannot distinguish signals from independent elements in nanoalloys. Thus, the insights from the element specific -band analysis presented in this work are a promising approach to determine structure-property relationships in a variety of transition metal nanoalloys and will be useful in the design of future high-performance catalysts.
纳米合金因其独特的原子结构和定制的成分而得到强化,展现出非凡的性能,使其成为解决能量存储和转换催化挑战的理想材料。然而,需要使用基于准确描述符的模型对从双金属到多金属成分的纳米合金的结构-性能关系进行定量描述,以推动高效材料设计以实现高性能催化。在这项工作中,我们使用X射线吸收近边光谱(XANES)从基于元素特定能带分析的角度突出了铂基合金催化剂的电子性质与催化活性之间的关系。通过使用一系列具有明确原子结构的L1-MPt/Pt(M = Fe、Co、Ni)核壳合金催化剂,我们量化了铂电子态的细微差异,并将铂能带结构与其对氧还原反应(ORR)的优异催化活性相关联。我们的分析使用能带边缘位置作为ORR质量活性的预测描述符,而不是常用的能带中心位置。结合密度泛函理论计算和诺尔施科夫能带理论,从实验测量中得出的铂态能带边缘位置阐明了L1-MPt/Pt核壳催化剂ORR性能的新物理见解。使用XANES进行的元素特定铂能带分析克服了传统基于X射线光电子能谱的价带分析中的挑战,后者无法区分纳米合金中独立元素的信号。因此,这项工作中提出的元素特定能带分析的见解是确定各种过渡金属纳米合金中结构-性能关系的一种有前途的方法,并且将有助于未来高性能催化剂的设计。