Suppr超能文献

通过双自由基氢原子转移实现的路易斯酸促进的可见光介导的芳基乙烯基吡啶的C(sp)-H键官能团化

Lewis-Acid-Promoted Visible-Light-Mediated C(sp)-H Bond Functionalization of Arylvinylpyridines via Diradical Hydrogen Atom Transfer.

作者信息

Hu Ye, Liu Qian, Zhou Xiang, Huang Yao, Fernández Israel, Xiong Yang

机构信息

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China.

Departamento de Química Orgánica and Centro de Innovacion en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

出版信息

Org Lett. 2024 Sep 27;26(38):8005-8010. doi: 10.1021/acs.orglett.4c02508. Epub 2024 Aug 7.

Abstract

A visible-light-induced intramolecular diradical-mediated hydrogen atom transfer (DHAT) of primary, secondary, and tertiary C(sp)-H bonds and subsequent cyclization is described. This transformation is enabled by triplet energy transfer upon Lewis acid coordination to alkyl-substituted arylvinylpyridines and gives access to a variety of benzocyclobutenes (>40 examples, 32-96% yield). Notably, tri- and tetrasubstituted olefins with tertiary C(sp)-H bonds effectively delivered sterically hindered products with adjacent all-carbon quaternary centers. Mechanistic evidence and density functional theory (DFT) calculations suggest that Lewis acid coordination was crucial for the success by modulating the reactivity of the diradical intermediates to unlock a challenging carbon-to-carbon DHAT and subsequent cyclization with a rather low barrier, which allows the functionalization of benzylic C(sp)-H bonds to construct otherwise inaccessible benzocyclobutenes.

摘要

本文描述了一种可见光诱导的分子内双自由基介导的一级、二级和三级C(sp³)-H键的氢原子转移(DHAT)及其随后的环化反应。这种转化是通过路易斯酸与烷基取代的芳基乙烯基吡啶配位后的三线态能量转移实现的,可用于合成多种苯并环丁烯(>40个实例,产率32-96%)。值得注意的是,带有三级C(sp³)-H键的三取代和四取代烯烃能有效地生成带有相邻全碳季碳中心的空间位阻较大的产物。机理证据和密度泛函理论(DFT)计算表明,路易斯酸配位通过调节双自由基中间体的反应性来解锁具有挑战性的碳-碳DHAT并随后以相当低的势垒进行环化,这对于成功实现苄基C(sp³)-H键的官能化以构建难以获得的苯并环丁烯至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验