Yu Tao, Liu Yuankai, Liu Yiwen, Li Haoyu, Ning Wenjie, Feng Yinhui, Zuo Daxian, Zhou Haoshen, Guo Shaohua
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.
Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China.
Small. 2024 Nov;20(46):e2405446. doi: 10.1002/smll.202405446. Epub 2024 Aug 7.
The application of lithium metal anode in all-solid-state batteries has the potential to achieve both high energy density and safety performance. However, the presence of serious dendrite issues hinders this potential. Here, the ion transport pathways and orientation of dendrite growth are regulated by utilizing the differences of ionic conductivity in heterogeneous electrolytes. The in situ formed Li-Ge alloy phases from the spontaneous reaction between LiGePS and the attracted dendrites greatly enhance the ability to resist dendrite growth. As an outcome, the heterogeneous electrolyte achieves a high critical current density of 2.1 mA cm and long-term stable symmetrical battery operation (0.3 mA cm for 17 000 h and 1.0 mA cm for 2000 h). Besides, due to the superior interfacial stability and low interface impedance between the heterogeneous electrolyte and lithium anode, the Li||LiNiCoMnO full battery exhibits great cycling stability (80.5% after 500 cycles at 1.0 mA cm) and rate performance (125.4 mAh g at 2.0 mA cm). This work provides a unique strategy of interface regulation via heterogeneous electrolytes design, offering insights into the development of state-of the-art all-solid-state batteries.
锂金属负极在全固态电池中的应用有潜力实现高能量密度和安全性能。然而,严重的枝晶问题阻碍了这一潜力的发挥。在此,通过利用异质电解质中离子电导率的差异来调节离子传输路径和枝晶生长方向。LiGePS与被吸引的枝晶之间自发反应原位形成的Li-Ge合金相极大地增强了抗枝晶生长的能力。结果,异质电解质实现了2.1 mA cm的高临界电流密度和长期稳定的对称电池运行(0.3 mA cm下运行17000小时,1.0 mA cm下运行2000小时)。此外,由于异质电解质与锂负极之间具有优异的界面稳定性和低界面阻抗,Li||LiNiCoMnO全电池表现出出色的循环稳定性(在1.0 mA cm下500次循环后为80.5%)和倍率性能(在2.0 mA cm下为125.4 mAh g)。这项工作通过异质电解质设计提供了一种独特的界面调控策略,为先进全固态电池的发展提供了见解。