Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States.
Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
J Am Chem Soc. 2024 Aug 21;146(33):23075-23091. doi: 10.1021/jacs.4c04230. Epub 2024 Aug 7.
Macrocyclic peptides show promise in targeting high-value therapeutically relevant binding sites due to their high affinity and specificity. However, their clinical application is often hindered by low membrane permeability, which limits their effectiveness against intracellular targets. Previous studies focused on peptide conformations in various solvents, leaving a gap in understanding their interactions with and translocation through lipid bilayers. Addressing this, our study explores the membrane interactions of stapled peptides, a subclass of macrocyclic peptides, using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. We conducted ssNMR measurements on ATSP-7041M, a prototypical stapled peptide, to understand its interaction with lipid membranes, leading to an MD-informed model for peptide membrane permeation. Our findings reveal that ATSP-7041M adopts a stable α-helical structure upon membrane binding, facilitated by a cation-π interaction between its phenylalanine side chain and the lipid headgroup. This interaction makes the membrane-bound state energetically favorable, facilitating membrane affinity and insertion. The bound peptide displayed asymmetric insertion depths, with the C-terminus penetrating deeper (approximately 9 Å) than the N-terminus (approximately 4.3 Å) relative to the lipid headgroups. Contrary to expectations, peptide dynamics was not hindered by membrane binding and exhibited rapid motions similar to cell-penetrating peptides. These dynamic interactions and peptide-lipid affinity appear to be crucial for membrane permeation. MD simulations indicated a thermodynamically stable transmembrane conformation of ATSP-7041M, reducing the energy barrier for translocation. Our study offers an in silico view of ATSP-7041M's translocation from the extracellular to the intracellular region, highlighting the significance of peptide-lipid interactions and dynamics in enabling peptide transit through membranes.
大环肽由于其高亲和力和特异性,在靶向高价值治疗相关结合位点方面显示出巨大的潜力。然而,它们的临床应用常常受到膜通透性低的限制,这限制了它们对细胞内靶标的有效性。以前的研究主要集中在各种溶剂中的肽构象上,因此对其与脂质双层相互作用和跨膜转运的了解存在空白。为了解决这个问题,我们的研究使用固态核磁共振(ssNMR)光谱和分子动力学(MD)模拟来探索订书肽(大环肽的一个子类)与膜的相互作用。我们对 ATSP-7041M(一种典型的订书肽)进行了 ssNMR 测量,以了解其与脂质膜的相互作用,从而得出一个关于肽膜渗透的 MD 启发模型。我们的研究结果表明,ATSP-7041M 在与膜结合时采用稳定的α-螺旋结构,这得益于其苯丙氨酸侧链与脂质头部基团之间的阳离子-π相互作用。这种相互作用使结合状态在能量上有利,促进了膜亲和力和插入。结合肽显示出不对称的插入深度,与脂质头部基团相比,C 末端(约 9Å)比 N 末端(约 4.3Å)更深地穿透。与预期相反,肽的动力学不受膜结合的阻碍,表现出类似于细胞穿透肽的快速运动。这些动态相互作用和肽-脂质亲和力似乎对膜渗透至关重要。MD 模拟表明 ATSP-7041M 具有热力学稳定的跨膜构象,降低了跨膜转运的能量障碍。我们的研究提供了 ATSP-7041M 从细胞外到细胞内区域的转运的计算视角,突出了肽-脂质相互作用和动力学在使肽通过膜转运中的重要性。