Suppr超能文献

一种基于步态图像的脑机接口,带有视觉反馈,用于在Lokomat上进行脊髓损伤康复治疗。

A Gait Imagery-Based Brain-Computer Interface With Visual Feedback for Spinal Cord Injury Rehabilitation on Lokomat.

作者信息

Blanco-Diaz Cristian Felipe, Serafini Ericka Raiane da Silva, Bastos-Filho Teodiano, Dantas Andre Felipe Oliveira de Azevedo, Santo Caroline Cunha do Espirito, Delisle-Rodriguez Denis

出版信息

IEEE Trans Biomed Eng. 2025 Jan;72(1):102-111. doi: 10.1109/TBME.2024.3440036. Epub 2025 Jan 15.

Abstract

OBJECTIVE

Motor Imagery (MI)-based Brain-Computer Interfaces (BCIs) have been proposed for the rehabilitation of people with disabilities, being a big challenge their successful application to restore motor functions in individuals with Spinal Cord Injury (SCI). This work proposes an Electroencephalography (EEG) gait imagery-based BCI to promote motor recovery on the Lokomat platform, in order to allow a clinical intervention by acting simultaneously on both central and peripheral nervous mechanisms.

METHODS

As a novelty, our BCI system accurately discriminates gait imagery tasks during walking and further provides a multi-channel EEG-based Visual Neurofeedback (VNFB) linked to (8-12 Hz) and (15-20 Hz) rhythms around Cz. VNFB is carried out through a cluster analysis strategy-based Euclidean distance, where the weighted mean MI feature vector is used as a reference to teach individuals with SCI to modulate their cortical rhythms.

RESULTS

The developed BCI reached an average classification accuracy of 74.4%. In addition, feature analysis demonstrated a reduction in cluster variance after several sessions, whereas metrics associated with self-modulation indicated a greater distance between both classes: passive walking with gait MI and passive walking without MI.

CONCLUSION

The results suggest that intervention with a gait MI-based BCI with VNFB may allow the individuals to appropriately modulate their rhythms of interest around Cz.

SIGNIFICANCE

This work contributes to the development of advanced systems for gait rehabilitation by integrating Machine Learning and neurofeedback techniques, to restore lower-limb functions of SCI individuals.

摘要

目的

基于运动想象(MI)的脑机接口(BCI)已被提出用于残疾人康复,但其成功应用于恢复脊髓损伤(SCI)个体的运动功能是一项巨大挑战。这项工作提出了一种基于脑电图(EEG)步态想象的BCI,以促进在Lokomat平台上的运动恢复,从而通过同时作用于中枢和外周神经机制来进行临床干预。

方法

新颖之处在于,我们的BCI系统能够在行走过程中准确区分步态想象任务,并进一步提供与Cz周围(8 - 12 Hz)和(15 - 20 Hz)节律相关的基于多通道EEG的视觉神经反馈(VNFB)。VNFB通过基于欧几里得距离的聚类分析策略来实现,其中加权平均MI特征向量被用作参考,以教导SCI个体调节其皮层节律。

结果

所开发的BCI平均分类准确率达到74.4%。此外,特征分析表明经过几次训练后聚类方差减小,而与自我调节相关的指标表明两类之间的距离更大:有步态MI的被动行走和无MI的被动行走。

结论

结果表明,采用基于步态MI和VNFB的BCI进行干预可能使个体能够适当地调节其在Cz周围感兴趣的节律。

意义

这项工作通过整合机器学习和神经反馈技术,为步态康复先进系统的开发做出了贡献,以恢复SCI个体的下肢功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验