Suppr超能文献

野生捕获的三文鱼暴露于各种工业化学品下有多安全?填补三文鱼毒性数据空白的首个计算机模拟模型。

How safe are wild-caught salmons exposed to various industrial chemicals? First ever in silico models for salmon toxicity data gaps filling.

机构信息

Chemometrics and Molecular Modeling Laboratory, Department of Chemistry and Physics, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA.

Chemometrics and Molecular Modeling Laboratory, Department of Chemistry and Physics, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA.

出版信息

J Hazard Mater. 2024 Sep 15;477:135401. doi: 10.1016/j.jhazmat.2024.135401. Epub 2024 Aug 2.

Abstract

Salmons are crucial to ecosystems and economic activities like commercial fishing and aquaculture, while also serving as an important source of nutrients, underscoring their ecological significance and the need for sustainable management. To better understand the toxicity and biological interactions between the salmon and industrial chemicals in the aquatic environment, we utilized the ToxValDB database to develop first ever computational toxicity models for six salmon subspecies (covering Atlantic and Pacific salmon) across two genera, employing Quantitative Structure-Activity Relationship (QSAR) and quantitative Read-Across Structure-Activity Relationship (q-RASAR) methods. For three smaller datasets (Oncorhynchus nerka, Oncorhynchus keta, and Oncorhynchus gorbuscha), we created mathematical models using the entire datasets where QSAR models demonstrated superior statistical quality compared to q-RASAR. Conversely, the three larger datasets (Oncorhynchus kisutch, Oncorhynchus tshawytscha, and Salmon salar) were divided into training and test sets, the q-RASAR models yielded better results compared to QSAR models. Mechanistic interpretations of these models revealed that descriptors such as Burden eigenvalues (BCUT), autocorrelation of topological structure (ATSC), and molecular polarizability were significant predictors of toxicity. For instance, higher polarizability and certain topological features were associated with increased toxicity as per the developed models. Statistically superior models for each subspecies were used to predict the aquatic toxicity of 1085 untested organic chemicals for toxicity data gap filling and risk assessment considering the applicability domain (AD). These insights are pivotal for designing safer chemicals and emphasize the need for sustainable management of salmon populations.

摘要

鲑鱼对生态系统和商业捕鱼、水产养殖等经济活动至关重要,同时也是重要的营养来源,这突显了它们的生态意义和可持续管理的必要性。为了更好地了解鲑鱼与水生环境中工业化学品之间的毒性和生物相互作用,我们利用 ToxValDB 数据库,首次为两个属的六个鲑鱼亚种(涵盖大西洋鲑鱼和太平洋鲑鱼)开发了计算毒性模型,采用定量构效关系(QSAR)和定量结构活性关系(q-RASAR)方法。对于三个较小的数据集(红大麻哈鱼、银大麻哈鱼和大麻哈鱼),我们使用整个数据集创建了数学模型,其中 QSAR 模型的统计质量优于 q-RASAR 模型。相反,对于三个较大的数据集(金大麻哈鱼、虹鳟和大西洋鲑鱼),将其分为训练集和测试集,q-RASAR 模型的结果优于 QSAR 模型。对这些模型的机制解释表明,Burden 特征值(BCUT)、拓扑结构自相关(ATSC)和分子极化率等描述符是毒性的重要预测因子。例如,根据所开发的模型,较高的极化率和某些拓扑特征与毒性增加有关。对于每个亚种,我们使用统计上更优的模型来预测 1085 种未经测试的有机化学品的水生毒性,以填补毒性数据缺口并进行风险评估,同时考虑到适用性域(AD)。这些见解对于设计更安全的化学品至关重要,并强调了对鲑鱼种群进行可持续管理的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验