Chemometrics and Molecular Modeling Laboratory, Department of Chemistry and Physics, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA.
Chemometrics and Molecular Modeling Laboratory, Department of Chemistry and Physics, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA.
J Hazard Mater. 2024 Dec 5;480:136060. doi: 10.1016/j.jhazmat.2024.136060. Epub 2024 Oct 4.
Oncorhynchus clarkii, Salvelinus fontinalis, and Salvelinus namaycush are vital trout species in North America, crucial for maintaining ecological balance, economic stability, and human health. These species thrive in cold, unpolluted waters and are highly vulnerable to contaminants. Given the rapid proliferation of industrial organic chemicals, traditional in vivo toxicity testing methods are inadequate to ensure timely and comprehensive risk assessments. Therefore, we employed in silico tools, namely Quantitative Structure-Activity Relationship (QSAR) and Quantitative Read-Across Structure-Activity Relationship (q-RASAR), to efficiently predict the aquatic toxicity of chemicals. Utilizing acute median lethal concentration (LC) data from the US EPA's ToxValDB, we developed the first-ever species-specific QSAR and q-RASAR models. The q-RASAR models outperformed traditional QSAR models by achieving higher internal and external statistical quality for each species. Key toxicity-determining descriptors included electrotopological state indices, autocorrelation descriptors, and similarity-based RASAR descriptors. For O. clarkii, the presence of chlorine atoms and rotatable bonds significantly influenced toxicity. S. fontinalis toxicity was strongly affected by polarizability, and van der Waals volumes, while S. namaycush showed sensitivity to weak hydrogen bond acceptors and topological complexity. The models predicted the toxicity of 1172 external compounds, identifying the most and least toxic chemicals for each species. This study not only offers the first comprehensive q-RASAR models for predicting trout species-specific toxicity but also provides novel insights into species-specific toxicological modes of action. The results contribute significantly to chemical screening and prioritization in aquatic risk assessments, effectively filling critical data gaps and advancing predictive modeling techniques.
虹鳟、山女鳟和北美红点鲑是北美的重要鳟鱼物种,对于维持生态平衡、经济稳定和人类健康至关重要。这些物种在寒冷、无污染的水域中茁壮成长,对污染物高度敏感。鉴于工业有机化学品的迅速扩散,传统的体内毒性测试方法不足以确保及时全面的风险评估。因此,我们采用了计算毒理学工具,即定量构效关系(QSAR)和定量读值交叉构效关系(q-RASAR),以高效预测化学品的水生毒性。利用美国环保署的 ToxValDB 中的急性半数致死浓度(LC)数据,我们为每个物种开发了首个特定物种的 QSAR 和 q-RASAR 模型。q-RASAR 模型通过为每个物种实现更高的内部和外部统计质量,优于传统的 QSAR 模型。关键的毒性决定描述符包括电化学拓扑状态指数、自相关描述符和基于相似性的 RASAR 描述符。对于虹鳟,氯原子和可旋转键的存在显著影响毒性。山女鳟的毒性受极化率和范德华体积强烈影响,而北美红点鲑对弱氢键受体和拓扑复杂性敏感。该模型预测了 1172 种外部化合物的毒性,确定了每种物种最毒和最无毒的化学品。这项研究不仅为预测鳟鱼特定物种毒性提供了首个全面的 q-RASAR 模型,还为特定物种的毒理学作用模式提供了新的见解。研究结果为水生风险评估中的化学筛选和优先级排序做出了重大贡献,有效地填补了关键数据空白并推进了预测建模技术。