Yan Yunyun, Twible Lauren E, Liu Felicia Y L, Arrey James L S, Colenbrander Nelson Tara E, Warren Lesley A
Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
Sci Total Environ. 2024 Nov 10;950:175272. doi: 10.1016/j.scitotenv.2024.175272. Epub 2024 Aug 5.
Base Mine Lake (BML), the first full-scale demonstration of oil sands tailings pit lake reclamation technology, is experiencing expansive, episodic hypolimnetic euxinia resulting in greater sulfur biogeochemical cycling within the water cap. Here, Fluid Fine Tailings (FFT)-water mesocosm experiments simulating the in situ BML summer hypolimnetic oxic-euxinic transition determined sulfur biogeochemical processes and their controlling factors. While mesocosm water caps without FFT amendments experienced limited geochemical and microbial changes during the experimental period, FFT-amended mesocosm water caps evidenced three successive stages of S speciation in ∼30 days: (S1) rising expansion of water cap euxinia from FFT to water surface; enabling (S2) rapid sulfate (SO) reduction and sulfide production directly within the water column; fostering (S3) generation and subsequent consumption of sulfur oxidation intermediate compounds (SOI). Identified key SOI, elemental S and thiosulfate, support subsequent SOI oxidation, reduction, and/or disproportionation processes in the system. Dominant water cap microbes shifted from methanotrophs and denitrifying/iron-reducing bacteria to functionally versatile sulfur-reducing bacteria (SRB) comprising sulfate-reducing bacteria (Desulfovibrionales) and SOI-reducing/disproportionating bacteria (Campylobacterales and Desulfobulbales). The observed microbial shift is driven by decreasing [SO] and organic aromaticity, with putative hydrocarbon-degrading bacteria providing electron donors for SRB. Comparison between unsterile and sterile water treatments further underscores the biogeochemical readiness of the in situ water cap to enhance oxidant depletion, euxinia expansion and establishment of water cap SRB communities aided by FFT migration of anaerobes. Results here identify the collective influence of FFT and water cap microbial communities on water cap euxinia expansion associated with sequential S reactions that are controlled by concentrations of oxidants, labile organic substrates and S species. This emphasizes the necessity of understanding this complex S cycling in assessing BML water cap O persistence.
碱矿湖(BML)是油砂尾矿坑湖修复技术的首个大规模示范项目,正经历着间歇性的湖下层缺氧,导致水层中硫的生物地球化学循环加剧。在此,通过流体细尾矿(FFT)-水微宇宙实验模拟碱矿湖夏季湖下层有氧-缺氧转变,确定了硫的生物地球化学过程及其控制因素。在实验期间,未添加FFT的微宇宙水层经历了有限的地球化学和微生物变化,而添加了FFT的微宇宙水层在约30天内出现了硫形态的三个连续阶段:(S1)水层缺氧从FFT向水面扩展;促使(S2)水柱内直接快速还原硫酸盐(SO)并产生硫化物;促进(S3)硫氧化中间化合物(SOI)的生成及随后的消耗。确定的关键SOI、元素硫和硫代硫酸盐,支持了系统中随后的SOI氧化、还原和/或歧化过程。占主导地位的水层微生物从甲烷营养菌和反硝化/铁还原细菌转变为功能多样的硫还原细菌(SRB),包括硫酸盐还原细菌(脱硫弧菌目)和SOI还原/歧化细菌(弯曲杆菌目和脱硫小杆菌目)。观察到的微生物转变是由[SO]和有机芳香性的降低驱动的,推测的烃降解细菌为SRB提供电子供体。未灭菌和灭菌水处理之间的比较进一步强调了原位水层在增强氧化剂消耗、缺氧扩展以及由厌氧菌的FFT迁移辅助的水层SRB群落建立方面的生物地球化学准备状态。这里的结果确定了FFT和水层微生物群落对与由氧化剂、不稳定有机底物和硫物种浓度控制的连续硫反应相关的水层缺氧扩展的综合影响。这强调了在评估碱矿湖水层O持久性时理解这种复杂硫循环的必要性。