Adene Philip A, Abdolahnezhad Mojtaba, Anwar Mian N, Ulrich Ania C, Lindsay Matthew B J
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK, S7N 5E2, Canada.
Department of Civil & Environmental Engineering, University of Alberta, Alberta, Edmonton, AB, T6G 1H9, Canada.
Geochem Trans. 2025 Aug 18;26(1):8. doi: 10.1186/s12932-025-00104-3.
Bitumen extraction from mined oil sands ore generates a large volume of fluid fines tailings (FFT) that must be incorporated into either aquatic or terrestrial reclamation landforms. Mine operators are developing various tailings technologies to accelerate FFT dewatering, including the addition of chemical coagulants and flocculants. However, the impacts of these coagulants and flocculants on biogeochemical processes in treated FFT are not fully understood. We conducted anaerobic batch experiments to examine the influence of different doses (i.e., 0, 500, 1000, and 1500 ppm) of sulfate-based coagulants, including aluminum sulfate (alum) [Al(SO)∙nHO], ferric sulfate (ferric) [Fe(SO)∙nHO], and calcium sulfate (gypsum) [CaSO∙2HO], on biogenic gas production and microbial communities in treated FFT. Our results show that sulfate addition stimulated microbial sulfate reduction, which inhibited methanogenesis in coagulated FFT relative to experimental controls. Sulfate depletion preceded increased methane production in the 500 ppm gypsum experiment, while larger ferric and alum doses produced higher sulfate concentrations and larger pH decreases. 16 S rRNA sequencing revealed that Comamonadaceae, Anaerolineaceae, and Desulfocapsaceae were the major bacterial families, while Methanoregulaceae and Methanosaetaceae dominated the archaeal families in all treatments. Precipitation of iron(II) sulfides limited dissolved hydrogen sulfide concentrations in experiments where Fe availability was not limited. Our results indicate that addition of sulfate-based coagulants can stimulate microbial sulfate reduction and suppress methanogenesis. However, resumption of methane production following sulfate depletion reveals complex interactions among biogeochemical reaction pathways. Overall, this study demonstrates that biogeochemical cycling of carbon, sulfur, and iron are important considerations for the development and implementation of tailings treatment technologies.
从开采的油砂矿石中提取沥青会产生大量的细颗粒尾矿(FFT),这些尾矿必须被纳入水生或陆地复垦地形中。矿山运营商正在开发各种尾矿处理技术以加速FFT脱水,包括添加化学凝聚剂和絮凝剂。然而,这些凝聚剂和絮凝剂对处理后的FFT中生物地球化学过程的影响尚未完全了解。我们进行了厌氧批次实验,以研究不同剂量(即0、500、1000和1500 ppm)的硫酸盐基凝聚剂,包括硫酸铝(明矾)[Al(SO)∙nHO]、硫酸铁(铁盐)[Fe(SO)∙nHO]和硫酸钙(石膏)[CaSO∙2HO],对处理后的FFT中生物气产生和微生物群落的影响。我们的结果表明,添加硫酸盐刺激了微生物硫酸盐还原,相对于实验对照,这抑制了凝结FFT中的甲烷生成。在500 ppm石膏实验中,硫酸盐耗尽先于甲烷产量增加,而较大剂量的铁盐和明矾产生了更高的硫酸盐浓度和更大的pH值下降。16 S rRNA测序显示,在所有处理中,Comamonadaceae、Anaerolineaceae和Desulfocapsaceae是主要细菌科,而Methanoregulaceae和Methanosaetaceae在古细菌科中占主导地位。在铁可用性不受限的实验中,硫化亚铁沉淀限制了溶解硫化氢浓度。我们的结果表明,添加硫酸盐基凝聚剂可以刺激微生物硫酸盐还原并抑制甲烷生成。然而,硫酸盐耗尽后甲烷产量的恢复揭示了生物地球化学反应途径之间的复杂相互作用。总体而言,这项研究表明,碳、硫和铁的生物地球化学循环是尾矿处理技术开发和实施的重要考虑因素。