Department of Mathematical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea.
Department of Mathematics, Inha University, 100, Inha-ro, Michuhol-gu, 22212, Incheon, Republic of Korea.
J Theor Biol. 2024 Nov 7;594:111914. doi: 10.1016/j.jtbi.2024.111914. Epub 2024 Aug 5.
We investigate an efficient computational tool to suggest useful treatment regimens for people infected with the human immunodeficiency virus (HIV). Structured treatment interruption (STI) is a regimen in which therapeutic drugs are periodically administered and withdrawn to give patients relief from an arduous drug therapy. Numerous studies have been conducted to find better STI treatment strategies using various computational tools with mathematical models of HIV infection. In this paper, we leverage a modified version of the double deep Q network with prioritized experience replay to improve the performance of classic deep learning algorithms. Numerical simulation results show that our methodology produces significantly more optimal cost values for shorter treatment periods compared to other recent studies. Furthermore, our proposed algorithm performs well in one-day segment scenarios, whereas previous studies only reported results for five-day segment scenarios.
我们研究了一种有效的计算工具,以建议感染人类免疫缺陷病毒 (HIV) 的人的有用治疗方案。 中断治疗 (STI) 是一种方案,其中周期性地给予治疗药物并撤回以减轻患者的艰苦药物治疗。 已经进行了许多研究,以使用具有 HIV 感染数学模型的各种计算工具找到更好的 STI 治疗策略。 在本文中,我们利用具有优先级经验回放的改进型双深度 Q 网络来提高经典深度学习算法的性能。 数值模拟结果表明,与其他最近的研究相比,我们的方法在更短的治疗期内产生了明显更优的成本值。 此外,我们提出的算法在一天段场景中表现良好,而以前的研究仅报告了五天段场景的结果。