Yu Yahe, Tran Hien
IEEE Trans Neural Netw Learn Syst. 2022 Jun 2;PP. doi: 10.1109/TNNLS.2022.3176204.
The computational algorithm proposed in this article is an important step toward the development of computational tools that could help guide clinicians to personalize the management of human immunodeficiency virus (HIV) infection. In this article, an XGBoost-based fitted Q iteration algorithm is proposed for finding the optimal structured treatment interruption (STI) strategies for HIV patients. Using the XGBoost-based fitted Q iteration algorithm, we can obtain acceptable and optimal STI strategies with fewer training data, when compared with the extra-tree-based fitted Q iteration algorithm, deep Q-networks (DQNs), and proximal policy optimization (PPO) algorithm. In addition, the XGBoost-based fitted Q iteration algorithm is computationally more efficient than the extra-tree-based fitted Q iteration algorithm.
本文提出的计算算法是朝着开发计算工具迈出的重要一步,这些工具可帮助指导临床医生对人类免疫缺陷病毒(HIV)感染进行个性化管理。本文提出了一种基于XGBoost的拟合Q迭代算法,用于寻找HIV患者的最佳结构化治疗中断(STI)策略。与基于极端随机树的拟合Q迭代算法、深度Q网络(DQN)和近端策略优化(PPO)算法相比,使用基于XGBoost的拟合Q迭代算法,我们可以用更少的训练数据获得可接受的最佳STI策略。此外,基于XGBoost的拟合Q迭代算法在计算上比基于极端随机树的拟合Q迭代算法更高效。