Suppr超能文献

基于XGBoost的拟合Q迭代法用于寻找HIV患者的最佳性传播感染(STI)策略

An XGBoost-Based Fitted Q Iteration for Finding the Optimal STI Strategies for HIV Patients.

作者信息

Yu Yahe, Tran Hien

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jun 2;PP. doi: 10.1109/TNNLS.2022.3176204.

Abstract

The computational algorithm proposed in this article is an important step toward the development of computational tools that could help guide clinicians to personalize the management of human immunodeficiency virus (HIV) infection. In this article, an XGBoost-based fitted Q iteration algorithm is proposed for finding the optimal structured treatment interruption (STI) strategies for HIV patients. Using the XGBoost-based fitted Q iteration algorithm, we can obtain acceptable and optimal STI strategies with fewer training data, when compared with the extra-tree-based fitted Q iteration algorithm, deep Q-networks (DQNs), and proximal policy optimization (PPO) algorithm. In addition, the XGBoost-based fitted Q iteration algorithm is computationally more efficient than the extra-tree-based fitted Q iteration algorithm.

摘要

本文提出的计算算法是朝着开发计算工具迈出的重要一步,这些工具可帮助指导临床医生对人类免疫缺陷病毒(HIV)感染进行个性化管理。本文提出了一种基于XGBoost的拟合Q迭代算法,用于寻找HIV患者的最佳结构化治疗中断(STI)策略。与基于极端随机树的拟合Q迭代算法、深度Q网络(DQN)和近端策略优化(PPO)算法相比,使用基于XGBoost的拟合Q迭代算法,我们可以用更少的训练数据获得可接受的最佳STI策略。此外,基于XGBoost的拟合Q迭代算法在计算上比基于极端随机树的拟合Q迭代算法更高效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验