Suppr超能文献

使用流感严重程度量表预测加拿大成人实验室确诊流感感染后的主要临床事件。

Predicting major clinical events among Canadian adults with laboratory-confirmed influenza infection using the influenza severity scale.

机构信息

Canadian Centre for Vaccinology, Dalhousie University, Halifax, Canada.

Department of Medicine, Universidade Federal de São Carlos, Rod. Washington Luis, km 235, São Carlos, SP, 13656-905, Brazil.

出版信息

Sci Rep. 2024 Aug 8;14(1):18378. doi: 10.1038/s41598-024-67931-9.

Abstract

We developed and validated the Influenza Severity Scale (ISS), a standardized risk assessment for influenza, to estimate and predict the probability of major clinical events in patients with laboratory-confirmed infection. Data from the Canadian Immunization Research Network's Serious Outcomes Surveillance Network (2011/2012-2018/2019 influenza seasons) enabled the selecting of all laboratory-confirmed influenza patients. A machine learning-based approach then identified variables, generated weighted scores, and evaluated model performance. This study included 12,954 patients with laboratory-confirmed influenza infections. The optimal scale encompassed ten variables: demographic (age and sex), health history (smoking status, chronic pulmonary disease, diabetes mellitus, and influenza vaccination status), clinical presentation (cough, sputum production, and shortness of breath), and function (need for regular support for activities of daily living). As a continuous variable, the scale had an AU-ROC of 0.73 (95% CI, 0.71-0.74). Aggregated scores classified participants into three risk categories: low (ISS < 30; 79.9% sensitivity, 51% specificity), moderate (ISS ≥ 30 but < 50; 54.5% sensitivity, 55.9% specificity), and high (ISS ≥ 50; 51.4% sensitivity, 80.5% specificity). ISS demonstrated a solid ability to identify patients with hospitalized laboratory-confirmed influenza at increased risk for Major Clinical Events, potentially impacting clinical practice and research.

摘要

我们开发并验证了流感严重程度评分(ISS),这是一种标准化的流感风险评估方法,用于估计和预测实验室确诊感染患者发生主要临床事件的概率。加拿大免疫研究网络严重结局监测网络(2011/2012-2018/2019 流感季节)的数据使我们能够选择所有实验室确诊的流感患者。然后,一种基于机器学习的方法确定了变量,生成了加权分数,并评估了模型性能。本研究包括 12954 例实验室确诊的流感感染患者。最佳评分包含十个变量:人口统计学特征(年龄和性别)、健康史(吸烟状况、慢性肺部疾病、糖尿病和流感疫苗接种状况)、临床表现(咳嗽、咳痰和呼吸急促)和功能(日常生活活动需要定期支持)。作为一个连续变量,该评分的 AUC-ROC 为 0.73(95%CI,0.71-0.74)。综合评分将参与者分为三个风险类别:低危(ISS<30;79.9%的敏感性,51%的特异性)、中危(ISS≥30 但<50;54.5%的敏感性,55.9%的特异性)和高危(ISS≥50;51.4%的敏感性,80.5%的特异性)。ISS 显示出识别有住院治疗的实验室确诊流感并存在重大临床事件风险增加的患者的能力较强,可能会对临床实践和研究产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1574/11306731/fad6a7a8817a/41598_2024_67931_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验