Suppr超能文献

颅内脑膜瘤:对术前影像学在管理中的应用的最新和新兴数据的综述。

Intracranial meningioma: A review of recent and emerging data on the utility of preoperative imaging for management.

机构信息

Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

出版信息

J Neuroimaging. 2024 Sep-Oct;34(5):527-547. doi: 10.1111/jon.13227. Epub 2024 Aug 7.

Abstract

Meningiomas are the most common neoplasms of the central nervous system, accounting for approximately 40% of all brain tumors. Surgical resection represents the mainstay of management for symptomatic lesions. Preoperative planning is largely informed by neuroimaging, which allows for evaluation of anatomy, degree of parenchymal invasion, and extent of peritumoral edema. Recent advances in imaging technology have expanded the purview of neuroradiologists, who play an increasingly important role in meningioma diagnosis and management. Tumor vascularity can now be determined using arterial spin labeling and dynamic susceptibility contrast-enhanced sequences, allowing the neurosurgeon or neurointerventionalist to assess patient candidacy for preoperative embolization. Meningioma consistency can be inferred based on signal intensity; emerging machine learning technologies may soon allow radiologists to predict consistency long before the patient enters the operating room. Perfusion imaging coupled with magnetic resonance spectroscopy can be used to distinguish meningiomas from malignant meningioma mimics. In this comprehensive review, we describe key features of meningiomas that can be established through neuroimaging, including size, location, vascularity, consistency, and, in some cases, histologic grade. We also summarize the role of advanced imaging techniques, including magnetic resonance perfusion and spectroscopy, for the preoperative evaluation of meningiomas. In addition, we describe the potential impact of emerging technologies, such as artificial intelligence and machine learning, on meningioma diagnosis and management. A strong foundation of knowledge in the latest meningioma imaging techniques will allow the neuroradiologist to help optimize preoperative planning and improve patient outcomes.

摘要

脑膜瘤是中枢神经系统最常见的肿瘤,约占所有脑肿瘤的 40%。手术切除是治疗有症状病变的主要方法。术前规划主要依赖于神经影像学,它可以评估解剖结构、实质侵犯程度和肿瘤周围水肿程度。成像技术的最新进展扩大了神经放射科医生的作用范围,他们在脑膜瘤的诊断和管理中发挥着越来越重要的作用。现在可以使用动脉自旋标记和动态对比增强序列来确定肿瘤的血管生成情况,使神经外科医生或神经介入医生能够评估患者接受术前栓塞的可能性。脑膜瘤的一致性可以根据信号强度来推断;新兴的机器学习技术可能很快就能让放射科医生在患者进入手术室之前预测一致性。灌注成像结合磁共振波谱可以用来区分脑膜瘤和恶性脑膜瘤的模拟物。在这篇综述中,我们描述了通过神经影像学可以确定的脑膜瘤的关键特征,包括大小、位置、血管生成、一致性,在某些情况下还包括组织学分级。我们还总结了高级成像技术,如磁共振灌注和波谱,在脑膜瘤术前评估中的作用。此外,我们还描述了人工智能和机器学习等新兴技术在脑膜瘤诊断和管理中的潜在影响。对最新脑膜瘤成像技术的深入了解将使神经放射科医生能够帮助优化术前规划并改善患者的预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验