Tamarindo Guilherme Henrique, Ribeiro Caroline Fidalgo, Silva Alana Della Torre, Castro Alex, Caruso Ícaro Putinhon, Souza Fátima Pereira, Taboga Sebastião Roberto, Loda Massimo, Góes Rejane Maira
Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil.
Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
Cancer Metab. 2024 Aug 7;12(1):24. doi: 10.1186/s40170-024-00348-0.
Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines.
Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation.
In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1.
In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.
前列腺癌(PCa)呈现出代谢重编程,其特征是通过从头脂肪生成增加脂肪酸摄取和合成,这两者均与线粒体生理学密切相关。二十二碳六烯酸(DHA)是一种ω-3多不饱和脂肪酸(PUFA),通过不同机制发挥其抗肿瘤特性,但其对PCa中线粒体的具体作用尚不清楚。因此,我们研究了DHA是否调节PCa细胞系中的线粒体功能。
在此,我们评估了非恶性PNT1A以及去势抵抗性(CRPC)前列腺22Rv1和PC3细胞系在DHA孵育后的线粒体功能。为此,我们使用海马细胞外流量测定法评估线粒体功能,用[C]-葡萄糖评估其氧化以及其对脂肪酸合成的贡献,用H-NMR测定代谢物谱,用MitoSOX测定超氧阴离子产生,用JC-1测定线粒体膜极化,用质谱法测定磷脂酰甘油水平和组成,除了透射电子显微镜外,还用MitoTracker染料染色在超分辨率下评估线粒体形态,用细胞内ELISA检测COX-I和SDH-A蛋白表达,并用流式细胞术(膜联蛋白V和7-AAD)评估细胞死亡情况。
在所有细胞系中,DHA均降低了线粒体的基础呼吸活性、ATP产生和备用能力。此外,ω-3诱导线粒体超极化、ROS过量产生以及膜磷脂酰甘油组成的变化。在PNT1A中,DHA导致线粒体碎片化并增加糖酵解,而在癌细胞中它刺激葡萄糖氧化,但特异性地降低了22Rv1中的从头脂肪生成,表明代谢发生了转变。在所有细胞系中,DHA调节了几种与能量代谢相关的代谢物,并被整合到心磷脂的前体磷脂酰甘油中,增加了线粒体膜的不饱和度指数。因此,DHA主要在PNT1A和22Rv1中引发细胞死亡。
总之,补充PUFA会显著影响线粒体代谢,以至于细胞在富含DHA的条件下无法增殖或存活。此外,补充DHA与抑制代谢相关途径(如从头脂肪生成)的组合在去势抵抗性前列腺癌中可能具有协同作用。