Suppr超能文献

采用卓越数据采集方法(ADAM)进行数字行为健康干预中的移动健康、可穿戴设备及物联网的数据收集与管理:一种新型信息架构的开发

Data Collection and Management of mHealth, Wearables, and Internet of Things in Digital Behavioral Health Interventions With the Awesome Data Acquisition Method (ADAM): Development of a Novel Informatics Architecture.

作者信息

Pulantara I Wayan, Wang Yuhan, Burke Lora E, Sereika Susan M, Bizhanova Zhadyra, Kariuki Jacob K, Cheng Jessica, Beatrice Britney, Loar India, Cedillo Maribel, Conroy Molly B, Parmanto Bambang

机构信息

School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, PA, United States.

School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

JMIR Mhealth Uhealth. 2024 Aug 7;12:e50043. doi: 10.2196/50043.

Abstract

The integration of health and activity data from various wearable devices into research studies presents technical and operational challenges. The Awesome Data Acquisition Method (ADAM) is a versatile, web-based system that was designed for integrating data from various sources and managing a large-scale multiphase research study. As a data collecting system, ADAM allows real-time data collection from wearable devices through the device's application programmable interface and the mobile app's adaptive real-time questionnaires. As a clinical trial management system, ADAM integrates clinical trial management processes and efficiently supports recruitment, screening, randomization, data tracking, data reporting, and data analysis during the entire research study process. We used a behavioral weight-loss intervention study (SMARTER trial) as a test case to evaluate the ADAM system. SMARTER was a randomized controlled trial that screened 1741 participants and enrolled 502 adults. As a result, the ADAM system was efficiently and successfully deployed to organize and manage the SMARTER trial. Moreover, with its versatile integration capability, the ADAM system made the necessary switch to fully remote assessments and tracking that are performed seamlessly and promptly when the COVID-19 pandemic ceased in-person contact. The remote-native features afforded by the ADAM system minimized the effects of the COVID-19 lockdown on the SMARTER trial. The success of SMARTER proved the comprehensiveness and efficiency of the ADAM system. Moreover, ADAM was designed to be generalizable and scalable to fit other studies with minimal editing, redevelopment, and customization. The ADAM system can benefit various behavioral interventions and different populations.

摘要

将来自各种可穿戴设备的健康和活动数据整合到研究中存在技术和操作方面的挑战。“超棒数据采集方法”(ADAM)是一个多功能的基于网络的系统,旨在整合来自各种来源的数据并管理大规模多阶段研究。作为一个数据收集系统,ADAM允许通过设备的应用程序可编程接口和移动应用程序的自适应实时问卷从可穿戴设备进行实时数据收集。作为一个临床试验管理系统,ADAM整合临床试验管理流程,并在整个研究过程中有效地支持招募、筛选、随机化、数据跟踪、数据报告和数据分析。我们以一项行为减肥干预研究(SMARTER试验)作为测试案例来评估ADAM系统。SMARTER是一项随机对照试验,筛选了1741名参与者,招募了502名成年人。结果,ADAM系统被高效且成功地部署,以组织和管理SMARTER试验。此外,凭借其多功能的整合能力,ADAM系统在2019冠状病毒病疫情导致面对面接触停止时,顺利且迅速地进行了必要的切换,转向完全远程评估和跟踪。ADAM系统所具备的原生远程功能将2019冠状病毒病封锁对SMARTER试验的影响降至最低。SMARTER试验的成功证明了ADAM系统的全面性和效率。此外,ADAM的设计具有通用性和可扩展性,只需进行最少的编辑、重新开发和定制就能适用于其他研究。ADAM系统可以使各种行为干预和不同人群受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/089e/11322796/92c2b48a9ac4/mhealth-v12-e50043-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验