Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India.
Org Biomol Chem. 2024 Aug 22;22(33):6810-6821. doi: 10.1039/d4ob00968a.
Nucleic acids (DNA and RNA) can form diverse secondary structures ranging from hairpins to duplex, triplex, G4-tetraplex and C4-i-motifs. Many of the DNA analogues designed as antisense oligonucleotides (ASO) are also adept at embracing such folded structures, although to different extents with altered stabilities. One such analogue, peptide nucleic acid (PNA), which is uncharged and achiral, forms hybrids with complementary DNA/RNA with greater stability and specificity than DNA:DNA/RNA hybrids. Like DNAs, these single-stranded PNAs can form PNA:DNA/RNA duplexes, PNA:DNA:PNA triplexes, PNA-G4 tetraplexes and PNA-C4-i-motifs. We have recently designed Janus-like bimodal PNAs endowed with two different nucleobase sequences on either side of a single aminoethylglycyl () PNA backbone and shown that these can simultaneously bind to two complementary DNA sequences from both faces of PNA. This leads to the formation of supramolecular polyplexes such as double duplexes, triple duplexes and triplexes of double duplexes with appropriate complementary DNA/RNA. Herein, we demonstrate that Janus/bimodal PNA with a poly G-sequence on the triazole side of the PNA backbone and mixed bases on the t-amide side, templates the initial formation of a (PNA-G5) tetraplex (triazole side), followed by the formation of a PNA:DNA duplex (t-amide side). Such a polyplex shows synergistic overall stabilisation compared to the isolated duplexes/quadruplex. The assembly of polyplexes with a shared backbone for duplexes and tetraplexes is programmable and may have potential applications in the self-assembly of nucleic acid nano- and origami structures. It is also shown that Janus PNAs enter the cells better than the standard -PNA oligomers, and hence have implications for applications as well.
核酸(DNA 和 RNA)可以形成多种二级结构,从发夹结构到双链、三链、G4-四链和 C4-i-基序。许多设计为反义寡核苷酸(ASO)的 DNA 类似物也擅长采用这种折叠结构,尽管稳定性不同。一种这样的类似物,肽核酸(PNA),它不带电荷且无手性,与互补的 DNA/RNA 形成的杂交体比 DNA:DNA/RNA 杂交体具有更高的稳定性和特异性。与 DNA 一样,这些单链 PNA 可以形成 PNA:DNA/RNA 双链体、PNA:DNA:PNA 三聚体、PNA-G4 四联体和 PNA-C4-i-基序。我们最近设计了类脂筏样双模态 PNA,在单个氨基乙基甘氨酸()PNA 主链的两侧赋予了两种不同的碱基序列,并表明这些 PNA 可以同时从 PNA 的两面结合两个互补的 DNA 序列。这导致形成超分子聚集体,例如双链体、三链体和双链体的三链体,这些聚集体具有适当的互补 DNA/RNA。在此,我们证明了 PNA 主链上的三唑侧带有聚 G 序列且 t-酰胺侧带有混合碱基的类脂筏样双模态 PNA 模板形成(PNA-G5)四联体(三唑侧)的初始形成,然后形成 PNA:DNA 双链体(t-酰胺侧)。与分离的双链体/四联体相比,这种聚集体表现出协同的整体稳定性。具有共享双链体和四联体主链的聚集体的组装是可编程的,并且可能在核酸纳米和折纸结构的自组装中具有潜在的应用。还表明,与标准 -PNA 寡聚物相比,类脂筏样 PNA 进入细胞的能力更好,因此也具有应用意义。