Suppr超能文献

基于毛细作用的选择性密封策略以提高压电微机电系统扬声器性能。

Capillary effect-based selective sealing strategy for increasing piezoelectric MEMS speaker performance.

作者信息

Wang Yan, Lv Tunan, Zhang Junning, Yu Hongbin

机构信息

School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China.

Optics Valley Laboratory, Wuhan, Hubei 430074 China.

出版信息

Microsyst Nanoeng. 2024 Aug 7;10:108. doi: 10.1038/s41378-024-00753-x. eCollection 2024.

Abstract

To address the serious acoustic performance deterioration induced by air leakage in the low-frequency range and the asynchronous vibration in electroacoustic transduction structures near the resonant frequency, a novel sealing strategy is proposed that targets one of the most widely reported piezoelectric MEMS speaker designs. This design consists of multiple cantilever beams, in which the air gaps between cantilevers are automatically and selectively filled with liquid polydimethylsiloxane (PDMS) via the capillary effect, followed by curing. In the proof-of-concept demonstration, the sound pressure level (SPL) within the frequency range lower than 100 Hz markedly increased after sealing in an experiment using an IEC ear simulator. Specifically, the SPL is increased by 4.9 dB at 20 Hz for a 40 V driving voltage. Moreover, the deteriorated SPL response near the resonant frequencies of the cantilever beams (18 kHz-19 kHz) caused by their asynchronous vibration induced by the fabrication process nonuniformity also significantly improved, which successfully increased the SPL to approximately 17.5 dB. Moreover, sealed devices feature nearly the same SPL response as the initial counterpart in the frequency band from 100 Hz to 16 kHz and a total harmonic distortion (THD) of 0.728% at 1 kHz for a 40 V driving voltage. Compared with existing sealing methods, the current approach offers easy operation, low damage risk, excellent repeatability/reliability and excellent robustness advantages and provides a promising technical solution for MEMS acoustic devices.

摘要

为了解决低频范围内空气泄漏引起的严重声学性能恶化以及共振频率附近电声转换结构中的异步振动问题,针对一种报道最为广泛的压电微机电系统(MEMS)扬声器设计,提出了一种新颖的密封策略。这种设计由多个悬臂梁组成,其中悬臂梁之间的气隙通过毛细作用自动且选择性地填充液态聚二甲基硅氧烷(PDMS),随后进行固化。在概念验证演示中,在使用IEC耳模拟器的实验中,密封后低于100 Hz频率范围内的声压级(SPL)显著增加。具体而言,对于40 V驱动电压,在20 Hz时SPL增加了4.9 dB。此外,由制造工艺不均匀性引起的悬臂梁异步振动导致的在悬臂梁共振频率(18 kHz - 19 kHz)附近恶化的SPL响应也得到了显著改善,成功将SPL提高到约17.5 dB。此外,密封器件在100 Hz至16 kHz频段内的SPL响应与初始器件几乎相同,对于40 V驱动电压,在1 kHz时总谐波失真(THD)为0.728%。与现有密封方法相比,当前方法具有操作简便、损坏风险低、重复性/可靠性优异以及鲁棒性强等优点,为MEMS声学器件提供了一种有前景的技术解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d04/11303757/6db24ce12a17/41378_2024_753_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验