Suppr超能文献

利用邻苯二甲酰肼/Ag 纳米粒子纳敏传感器对水微滴中羟基自由基的高灵敏度表面增强拉曼散射检测。

Highly Sensitive Surface-Enhanced Raman Scattering Detection of Hydroxyl Radicals in Water Microdroplets Using Phthalhydrazide/Ag Nanoparticles Nanosensor.

机构信息

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.

Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China.

出版信息

Environ Sci Technol. 2024 Sep 17;58(37):16497-16506. doi: 10.1021/acs.est.4c03081. Epub 2024 Aug 8.

Abstract

The spontaneous generation of hydrogen peroxide (HO) within atmospheric microdroplets, such as raindrops and aerosols, plays a crucial role in various environmental processes including pollutant degradation and oxidative stress. However, quantifying hydroxyl radicals (•OH), essential for HO formation, remains challenging due to their short lifespan and low concentration. This study addresses this gap by presenting a highly sensitive and selective surface-enhanced Raman scattering (SERS) nanosensor specifically designed for quantifying •OH within water microdroplets. Utilizing a phthalhydrazide (Phth) probe, the SERS technique enables rapid, interference-free detection of •OH at nanomolar concentrations. It achieves a linear detection range from 2 nM to 2 μM and a limit of detection as low as 0.34 nM. Importantly, the SERS sensor demonstrates robustness and accuracy within water microdroplets, paving the way for comprehensive mechanistic studies of HO generation in the atmosphere. This innovative approach not only offers a powerful tool for environmental research but also holds potential for advancing our understanding of atmospheric HO formation and its impact on air quality and pollutant degradation.

摘要

大气微液滴(如雨水和气溶胶)中过氧化氢(HO)的自发生成在包括污染物降解和氧化应激在内的各种环境过程中起着至关重要的作用。然而,由于羟基自由基(•OH)的寿命短且浓度低,因此对其进行定量仍然具有挑战性。本研究通过提出一种专门设计用于量化水微液滴内•OH 的高灵敏度和选择性表面增强拉曼散射(SERS)纳米传感器来解决这一差距。该 SERS 技术利用邻苯二醛(Phth)探针能够以纳摩尔浓度快速、无干扰地检测•OH。它的线性检测范围为 2 nM 至 2 μM,检测限低至 0.34 nM。重要的是,SERS 传感器在水微液滴内表现出稳健性和准确性,为大气中 HO 生成的全面机制研究铺平了道路。这种创新方法不仅为环境研究提供了强大的工具,而且还有助于我们加深对大气 HO 形成及其对空气质量和污染物降解的影响的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验