Saini Kanika, Arulananda Babu Srinivasarao, Saravanamurugan Shunmugavel
Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, Punjab, 140 306, India.
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81 (Knowledge City), Mohali, Punjab, 140 306, India.
ChemSusChem. 2025 Jan 14;18(2):e202401277. doi: 10.1002/cssc.202401277. Epub 2024 Oct 10.
Catalyst development for upgrading bio-based chemicals towards primary amines has increasingly attracted owing to their applications in the pharmaceutical and polymer industries. The surface acidic sites in metal oxide-based catalysts play a key role in the reductive amination of aldehydes/ketones involving H and NH; however, the crucial role of the type of surface acidic species and their strength remains unclear. Herein, this study exhibits the catalytic reductive amination of furfural (FUR) to furfurylamine (FUA) with Ru supported on tetragonal (Ru/T-ZrO) and monoclinic (Ru/M-ZrO) ZrO. Ru/T-ZrO exhibited an 11.8-fold higher rate of reductive amination than Ru/M-ZrO, giving a quantitative yield of FUA (99 %) at 80 °C in 2.5 h and is recyclable up to four runs. Catalyst surface investigation using spectroscopic techniques, like X-ray photoelectron, electron paramagnetic resonance, and Raman, confirm higher oxygen vacancy sites (1.6 times) on the surface of Ru/T-ZrO compared to Ru/M-ZrO. Moreover, in-situ NH-diffuse reflectance infrared Fourier transform spectroscopy studies display that Ru/T-ZrO has more moderate Bronsted acidic sites (surface H-bonded hydroxyl groups) than Ru/M-ZrO. Further, the controlled experiments and poisoning studies with KSCN and 2,6-lutidine suggest the crucial role of O sites (Lewis acidic sites) and surface hydroxyl groups (Bronsted acidic sites) for selective FUA formation.
由于生物基化学品在制药和聚合物工业中的应用,将其升级为伯胺的催化剂开发越来越受到关注。基于金属氧化物的催化剂中的表面酸性位点在涉及H和NH的醛/酮还原胺化反应中起关键作用;然而,表面酸性物种的类型及其强度的关键作用仍不清楚。在此,本研究展示了负载在四方(Ru/T-ZrO)和单斜(Ru/M-ZrO)ZrO上的Ru将糠醛(FUR)催化还原胺化为糠胺(FUA)的过程。Ru/T-ZrO的还原胺化速率比Ru/M-ZrO高11.8倍,在80°C下2.5小时内FUA的产率达到定量(99%),并且可循环使用多达四次。使用光谱技术(如X射线光电子能谱、电子顺磁共振和拉曼光谱)对催化剂表面进行研究,证实与Ru/M-ZrO相比,Ru/T-ZrO表面的氧空位位点更多(1.6倍)。此外,原位NH-漫反射红外傅里叶变换光谱研究表明,Ru/T-ZrO比Ru/M-ZrO具有更多中等强度的布朗斯台德酸性位点(表面氢键合羟基)。此外,用KSCN和2,6-二甲基吡啶进行的对照实验和中毒研究表明,O位点(路易斯酸性位点)和表面羟基(布朗斯台德酸性位点)对选择性形成FUA起着关键作用。