Xia Dong, Li Qun, Mannering Jamie, Qin Yi, Li Heng, Xu Yifei, Ahamed Ashiq, Zhou Wenyu, Kulak Alexander, Huang Peng
Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
Small. 2024 Nov;20(47):e2404364. doi: 10.1002/smll.202404364. Epub 2024 Aug 8.
Ultrahigh-temperature Joule-heating of carbon nanostructures opens up unique opportunities for property enhancements and expanded applications. This study employs rapid electrical Joule-heating at ultrahigh temperatures (up to 3000 K within 60 s) to induce a transformation in nanocarbon aerogels, resulting in highly graphitic structures. These aerogels function as versatile platforms for synthesizing customizable metal oxide nanoparticles while significantly reducing carbon emissions compared to conventional furnace heating methods. The thermal conductivity of the aerogel, characterized by Umklapp scattering, can be precisely adjusted by tuning the heating temperature. Utilizing the aerogel's superhydrophobic properties enables its practical application in filtration systems for efficiently separating toxic halogenated solvents from water. The hierarchically porous aerogel, featuring a high surface area of 607 m g, ensures the uniform distribution and spacing of embedded metal oxide nanoparticles, offering considerable advantages for catalytic applications. These findings demonstrate exceptional catalytic performance in oxidative desulfurization, achieving a 98.9% conversion of dibenzothiophene in the model fuel. These results are corroborated by theoretical calculations, surpassing many high-performance catalysts. This work highlights the pragmatic and highly efficient use of nanocarbon structures in nanoparticle synthesis under ultrahigh temperatures, with short heating durations. Its broad implications extend to the fields of electrochemistry, energy storage, and high-temperature sensing.
碳纳米结构的超高温焦耳加热为性能提升和应用拓展带来了独特机遇。本研究采用超高温(60秒内可达3000K)下的快速电焦耳加热来诱导纳米碳气凝胶发生转变,从而形成高度石墨化的结构。这些气凝胶可作为合成定制金属氧化物纳米颗粒的通用平台,与传统炉加热方法相比,能显著减少碳排放。通过非谐散射表征的气凝胶热导率可通过调节加热温度精确调控。利用气凝胶的超疏水特性可使其在过滤系统中实际应用,以有效从水中分离有毒卤代溶剂。具有607 m² g高比表面积的分级多孔气凝胶确保了嵌入的金属氧化物纳米颗粒均匀分布和间距,为催化应用提供了显著优势。这些发现表明在氧化脱硫中具有卓越的催化性能,在模型燃料中实现了二苯并噻吩98.9%的转化率。理论计算证实了这些结果,超过了许多高性能催化剂。这项工作突出了纳米碳结构在超高温、短加热时间下纳米颗粒合成中的实用且高效应用。其广泛的影响延伸到电化学、能量存储和高温传感领域。