Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Alzheimers Dement. 2024 Oct;20(10):7037-7047. doi: 10.1002/alz.14178. Epub 2024 Aug 8.
Whether plasma biomarkers play roles in predicting incident dementia among the general population is worth exploring.
A total of 1857 baseline dementia-free older adults with follow-ups up to 13.5 years were included from a community-based cohort. The Recursive Feature Elimination (RFE) algorithm aided in feature selection from 90 candidate predictors to construct logistic regression, naive Bayes, bagged trees, and random forest models. Area under the curve (AUC) was used to assess the model performance for predicting incident dementia.
During the follow-up of 12,716 person-years, 207 participants developed dementia. Four predictive models, incorporated plasma p-tau217, age, and scores of MMSE, STICK, and AVLT, exhibited AUCs ranging from 0.79 to 0.96 in testing datasets. These models maintained robustness across various subgroups and sensitivity analyses.
Plasma p-tau217 outperforms most traditional variables and may be used to preliminarily screen older individuals at high risk of dementia.
Plasma p-tau217 showed comparable importance with age and cognitive tests in predicting incident dementia among community older adults. Machine learning models combining plasma p-tau217, age, and cognitive tests exhibited excellent performance in predicting incident dementia. The training models demonstrated robustness in subgroup and sensitivity analysis.
血浆生物标志物是否在预测普通人群中的痴呆发生方面发挥作用值得探索。
共纳入了来自社区为基础队列的 1857 名基线无痴呆且随访时间长达 13.5 年的老年人。递归特征消除(RFE)算法辅助从 90 个候选预测因子中进行特征选择,以构建逻辑回归、朴素贝叶斯、袋装树和随机森林模型。曲线下面积(AUC)用于评估预测痴呆发生的模型性能。
在 12716 人年的随访期间,有 207 名参与者发生了痴呆。四个预测模型纳入了血浆 p-tau217、年龄以及 MMSE、STICK 和 AVLT 的评分,在测试数据集中的 AUC 值范围为 0.79 至 0.96。这些模型在各种亚组和敏感性分析中保持稳健性。
血浆 p-tau217 的表现优于大多数传统变量,可用于初步筛选痴呆风险较高的老年人。
在预测社区老年人的痴呆发生方面,血浆 p-tau217 与年龄和认知测试具有同等重要性。结合血浆 p-tau217、年龄和认知测试的机器学习模型在预测痴呆发生方面表现出出色的性能。训练模型在亚组和敏感性分析中表现出稳健性。