Suppr超能文献

在变力等长收缩过程中,通过整合运动单元滤波器来增强表面肌电图的分解。

Integration of Motor Unit Filters for Enhanced Surface Electromyogram Decomposition During Varying Force Isometric Contraction.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2905-2913. doi: 10.1109/TNSRE.2024.3438770. Epub 2024 Aug 14.

Abstract

Muscles generate varying levels of force by recruiting different numbers of motor units (MUs), and as the force increases, the number of recruited MUs gradually rises. However, current decoding methods encounter difficulties in maintaining a stable and consistent growth trend in MU numbers with increasing force. In some instances, an unexpected reduction in the number of MUs can even be observed as force intensifies. To address this issue, in this study, we propose an enhanced decoding method that adaptively reutilizes MU filters. Specifically, in addition to the normal decoding process, we introduced an additional procedure where MU filters are reused to initialize the algorithm. The MU filters are iterated and adapted to the new signals, aiming to decode motor units that were actually activated but cannot be identified due to heavy superimposition. We tested our method on both simulated and experimental surface electromyogram (sEMG) signals. We simulated isometric signals (10%-70%) with known MU firing patterns using experimentally recorded MU action potentials from forearm muscles and compared the decomposition results to two baseline approaches: convolution kernel compensation (CKC) and fast independent component analysis (fastICA). Our method increased the decoded MU number by a rate of 135.4% ± 62.5 % and 63.6% ± 20.2 % for CKC and fastICA, respectively, across different signal-to-noise ratios. The sensitivity and precision for MUs decomposed using the enhanced method remained at the same accuracy level (p <0.001) as those of normally decoded MUs. For the experimental signals, eight healthy subjects performed hand movements at five different force levels (10%-90%), during which sEMG signals were recorded and decomposed. The results indicate that the enhanced process increased the number of decoded MUs by 21.8% ± 10.9 % across all subjects. We discussed the possibility of fully capturing all activated motor units by appropriately reusing previously decoded MU filters and improving the balance of activated motor unit numbers across varying excitation levels.

摘要

肌肉通过募集不同数量的运动单位(MU)来产生不同水平的力,随着力的增加,募集的 MU 数量逐渐增加。然而,目前的解码方法在力增加时难以保持 MU 数量的稳定和一致的增长趋势。在某些情况下,随着力的增强,甚至会观察到 MU 数量的意外减少。为了解决这个问题,在本研究中,我们提出了一种增强的解码方法,自适应地重新利用 MU 滤波器。具体来说,除了正常的解码过程,我们引入了一个额外的过程,其中 MU 滤波器被重新用于初始化算法。MU 滤波器被迭代并适应新的信号,旨在解码由于严重叠加而无法识别但实际上已激活的运动单位。我们在模拟和实验表面肌电图(sEMG)信号上测试了我们的方法。我们使用从前臂肌肉记录的实验性 MU 动作电位模拟了具有已知 MU 发射模式的等长信号(10%-70%),并将分解结果与两种基线方法进行了比较:卷积核补偿(CKC)和快速独立成分分析(fastICA)。我们的方法将解码的 MU 数量增加了 135.4%±62.5%和 63.6%±20.2%,而 CKC 和 fastICA 的信号噪声比分别为 135.4%±62.5%和 63.6%±20.2%。使用增强方法分解的 MU 的灵敏度和精度与正常解码的 MU 保持相同的准确度水平(p<0.001)。对于实验信号,八名健康受试者在五个不同的力水平(10%-90%)下进行手部运动,在此期间记录和分解 sEMG 信号。结果表明,增强过程使所有受试者的解码 MU 数量增加了 21.8%±10.9%。我们讨论了通过适当重新使用以前解码的 MU 滤波器和改善不同激发水平下激活的运动单位数量之间的平衡来完全捕获所有激活的运动单位的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验