Suppr超能文献

抗病毒逆转录酶的从头基因合成。

De novo gene synthesis by an antiviral reverse transcriptase.

机构信息

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Department of Biological Sciences, Columbia University, New York, NY, USA.

出版信息

Science. 2024 Oct 4;386(6717):eadq0876. doi: 10.1126/science.adq0876.

Abstract

Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. We show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis through rolling circle reverse transcription of a noncoding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection. This DNA product constitutes a protein-coding, nearly endless open reading frame () gene whose expression leads to potent cell growth arrest, restricting the viral infection. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.

摘要

防御相关逆转录酶 (DRT) 系统进行 DNA 合成以保护细菌免受病毒感染,但它们的 DNA 产物的身份和功能在很大程度上仍然未知。我们表明,DRT2 系统编码了一种前所未有的免疫途径,该途径涉及通过非编码 RNA (ncRNA) 的滚环逆转录进行从头基因合成。ncRNA 上的编程模板跳跃产生串联的 cDNA,在病毒感染时变成双链。该 DNA 产物构成一个编码蛋白质的、几乎无穷无尽的开放阅读框 () 基因,其表达导致强烈的细胞生长停滞,从而限制病毒感染。我们的工作突出了通过 RNA 模板化基因创建来扩展基因组编码潜力的优雅方式,并挑战了沿基因组 DNA 一维轴编码遗传信息的传统范例。

相似文献

1
De novo gene synthesis by an antiviral reverse transcriptase.
Science. 2024 Oct 4;386(6717):eadq0876. doi: 10.1126/science.adq0876.
2
Phage-triggered reverse transcription assembles a toxic repetitive gene from a noncoding RNA.
Science. 2024 Oct 4;386(6717):eadq3977. doi: 10.1126/science.adq3977.
3
De novo gene synthesis by an antiviral reverse transcriptase.
bioRxiv. 2024 May 8:2024.05.08.593200. doi: 10.1101/2024.05.08.593200.
6
DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon.
J Mol Biol. 2007 Nov 23;374(2):322-33. doi: 10.1016/j.jmb.2007.09.047. Epub 2007 Sep 20.
10
Protein-primed DNA homopolymer synthesis by an antiviral reverse transcriptase.
bioRxiv. 2025 Mar 25:2025.03.24.645077. doi: 10.1101/2025.03.24.645077.

引用本文的文献

2
Presence of group II introns in phage genomes.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf761.
3
Temperate phages enhance host fitness via RNA-guided flagellar remodeling.
bioRxiv. 2025 Jul 22:2025.07.22.666180. doi: 10.1101/2025.07.22.666180.
4
Structural basis for the evolution of a domesticated group II intron-like reverse transcriptase to function in host cell DNA repair.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2504208122. doi: 10.1073/pnas.2504208122. Epub 2025 Jul 29.
5
Driving factors for beta-lactam resistance gene amplification during resistance evolution in .
Antimicrob Agents Chemother. 2025 Jul 23:e0044125. doi: 10.1128/aac.00441-25.
6
Exapted CRISPR-Cas12f homologs drive RNA-guided transcription.
bioRxiv. 2025 Jun 10:2025.06.10.658865. doi: 10.1101/2025.06.10.658865.
7
Prevalence of Group II Introns in Phage Genomes.
bioRxiv. 2025 May 23:2025.05.22.655115. doi: 10.1101/2025.05.22.655115.
8
Protein-primed homopolymer synthesis by an antiviral reverse transcriptase.
Nature. 2025 May 28. doi: 10.1038/s41586-025-09179-5.
9
Protein-primed DNA homopolymer synthesis by an antiviral reverse transcriptase.
bioRxiv. 2025 Mar 25:2025.03.24.645077. doi: 10.1101/2025.03.24.645077.
10
Structural basis of antiphage defense by an ATPase-associated reverse transcriptase.
bioRxiv. 2025 Mar 26:2025.03.26.645336. doi: 10.1101/2025.03.26.645336.

本文引用的文献

2
Toxin/antitoxin systems induce persistence and work in concert with restriction/modification systems to inhibit phage.
Microbiol Spectr. 2024 Jan 11;12(1):e0338823. doi: 10.1128/spectrum.03388-23. Epub 2023 Dec 6.
3
Genome editing with retroelements.
Science. 2023 Oct 27;382(6669):370-371. doi: 10.1126/science.adi3183. Epub 2023 Oct 26.
4
Transposon-encoded nucleases use guide RNAs to promote their selfish spread.
Nature. 2023 Oct;622(7984):863-871. doi: 10.1038/s41586-023-06597-1. Epub 2023 Sep 27.
5
A Multi-Layer-Controlled Strategy for Cloning and Expression of Toxin Genes in .
Toxins (Basel). 2023 Aug 18;15(8):508. doi: 10.3390/toxins15080508.
6
The highly diverse antiphage defence systems of bacteria.
Nat Rev Microbiol. 2023 Oct;21(10):686-700. doi: 10.1038/s41579-023-00934-x. Epub 2023 Jul 17.
7
A host of armor: Prokaryotic immune strategies against mobile genetic elements.
Cell Rep. 2023 Jul 25;42(7):112672. doi: 10.1016/j.celrep.2023.112672. Epub 2023 Jun 21.
8
RNAcanvas: interactive drawing and exploration of nucleic acid structures.
Nucleic Acids Res. 2023 Jul 5;51(W1):W501-W508. doi: 10.1093/nar/gkad302.
9
Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science. 2023 Mar 17;379(6637):1123-1130. doi: 10.1126/science.ade2574. Epub 2023 Mar 16.
10
Group II intron-like reverse transcriptases function in double-strand break repair.
Cell. 2022 Sep 29;185(20):3671-3688.e23. doi: 10.1016/j.cell.2022.08.014. Epub 2022 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验