抗病毒逆转录酶引发的蛋白质引发的同聚物合成。
Protein-primed homopolymer synthesis by an antiviral reverse transcriptase.
作者信息
Tang Stephen, Žedaveinytė Rimantė, Burman Nathaniel, Pandey Shishir, Ramirez Josephine L, Kulber Louie M, Wiegand Tanner, Wilkinson Royce A, Ma Yanzhe, Zhang Dennis J, Lampe George D, Berisa Mirela, Jovanovic Marko, Wiedenheft Blake, Sternberg Samuel H
机构信息
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
出版信息
Nature. 2025 May 28. doi: 10.1038/s41586-025-09179-5.
Bacteria defend themselves from viral predation using diverse immune systems, many of which target foreign DNA for degradation. Defense-associated reverse transcriptase (DRT) systems provide an intriguing counterpoint to this strategy by leveraging DNA synthesis instead. We and others recently showed that DRT2 systems use an RNA template to assemble a de novo gene that encodes an antiviral effector protein, Neo. It remains unknown whether similar mechanisms of defense are employed by other related DRT families. Focusing on DRT9, here we uncover an unprecedented mechanism of DNA homopolymer synthesis. Viral infection triggers polydeoxyadenylate (poly-dA) accumulation in the cell, driving abortive infection and population-level immunity. Cryo-EM structures reveal how a noncoding RNA serves as both a structural scaffold and reverse transcription template to direct hexameric complex assembly and poly-dA synthesis. Remarkably, biochemical and functional experiments identify tyrosine residues within the reverse transcriptase itself that likely prime DNA synthesis, leading to the formation of high-molecular weight protein-DNA covalent adducts. Synthesis of poly-dA by DRT9 in vivo is regulated by the competing activities of phage-encoded triggers and host-encoded silencers. Collectively, our work unveils a novel nucleic acid-driven defense system that expands the paradigm of bacterial immunity and broadens the known functions of reverse transcriptases.
细菌利用多种免疫系统抵御病毒捕食,其中许多免疫系统靶向降解外来DNA。防御相关逆转录酶(DRT)系统则通过利用DNA合成提供了一种有趣的反制策略。我们和其他人最近发现,DRT2系统利用RNA模板组装一个全新的基因,该基因编码一种抗病毒效应蛋白Neo。其他相关DRT家族是否采用类似的防御机制仍不清楚。在此,我们聚焦于DRT9,发现了一种前所未有的DNA同聚物合成机制。病毒感染会触发细胞内聚脱氧腺苷酸(poly-dA)的积累,导致感染流产和群体水平的免疫。冷冻电镜结构揭示了一种非编码RNA如何既作为结构支架又作为逆转录模板来指导六聚体复合物的组装和poly-dA的合成。值得注意的是,生化和功能实验确定了逆转录酶本身内的酪氨酸残基可能引发DNA合成,导致形成高分子量的蛋白质-DNA共价加合物。DRT9在体内合成poly-dA受噬菌体编码的触发因子和宿主编码的沉默因子的竞争活性调节。总的来说,我们的工作揭示了一种新型的核酸驱动防御系统,扩展了细菌免疫的范式,并拓宽了逆转录酶的已知功能。