Suppr超能文献

超薄碳壳保护铜位点以通过低电位甲醛氧化促进阳极产氢

Ultrathin Carbon Shell Protecting Copper Sites to Boost Anodic Hydrogen Production via Low-Potential Formaldehyde Oxidation.

作者信息

Gao Xiafei, Yang Heng, Qiu Jianghui, Liu Limin, Peng Juan

机构信息

College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.

College of Chemistry and Chemical Engineering, Jinggangshan University, Jian 343009, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 21;16(33):43582-43590. doi: 10.1021/acsami.4c08722. Epub 2024 Aug 8.

Abstract

The oxidation of aldehydes on a copper-based electrocatalyst within a small potential window can produce hydrogen at the anode, thus offering a bipolar hydrogen production system. However, the inherent activity and stability of Cu-based electrocatalysts for aldehyde oxidation are still not satisfactory in practical application. Herein, by coating an ultrathin carbon shell on the copper sphere, an effective and stable formaldehyde oxidation reaction (FOR) can be realized to produce H at a very low potential. FOR needs only a potential of 0.13 V (vs RHE) to reach a current density of 100 mA cm. By coupling FOR with hydrogen evolution reaction (HER), hydrogen is generated simultaneously at both the cathode and the anode. The Faraday efficiency of H at the bipolar state is close to 100%. In a flow cell, it needs a low cell voltage of 0.1 V to reach a current density of 100 mA cm. Moreover, it can be operated steadily for more than 30 h at high current density. The carbon shell acts as an armor to protect the Cu(0) sites, avoid the oxidation of copper, and keep the catalyst activity for a long time in the electrolytic process. Experimental and theoretical calculation results indicate that electron transfer occurs at the interface between the copper core and ultrathin carbon shell. The ultrathin carbon-coated Cu reduces the reaction energy barrier, making the C-H bond more easily fractured and facilitating H coupling to generate H. This study provides a basic principle for the design of copper-based electrocatalysts with long durability and activity.

摘要

在小电位窗口内,醛在铜基电催化剂上的氧化可在阳极产生氢气,从而提供一种双极制氢系统。然而,铜基电催化剂用于醛氧化的固有活性和稳定性在实际应用中仍不尽人意。在此,通过在铜球上包覆一层超薄碳壳,可在非常低的电位下实现有效且稳定的甲醛氧化反应(FOR)以产生氢气。FOR仅需0.13 V(相对于可逆氢电极)的电位即可达到100 mA cm的电流密度。通过将FOR与析氢反应(HER)耦合,在阴极和阳极同时产生氢气。双极状态下氢气的法拉第效率接近100%。在流动池中,仅需0.1 V的低电池电压即可达到100 mA cm的电流密度。此外,它在高电流密度下可稳定运行超过30小时。碳壳起到保护铜(0)位点的作用,避免铜的氧化,并在电解过程中长期保持催化剂活性。实验和理论计算结果表明,电子转移发生在铜核与超薄碳壳的界面处。超薄碳包覆的铜降低了反应能垒,使C-H键更容易断裂,并促进氢耦合生成氢气。该研究为设计具有长期耐久性和活性的铜基电催化剂提供了基本原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验