Yu Hongjie, Zhang Lijun, Jiang Shaojian, Liu Wenke, Deng Kai, Wang Ziqiang, Xu You, Wang Hongjing, Wang Liang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Small. 2024 Nov;20(47):e2406107. doi: 10.1002/smll.202406107. Epub 2024 Aug 22.
Water splitting for hydrogen production is limited by high cell voltage and low energy conversion efficiencies due to the slow kinetic process of the oxygen evolution reaction (OER). Here, an electrolytic system is constructed in which the cathode and anode co-release H at ultra-low input voltage using formaldehyde oxidation reaction (FOR) instead of OER. The prepared RuCe co-doped CuO nanotubes on copper foam (RuCe-CuO/CF) are used as electrode materials for the HER-FOR system. A current density of 0.8 A cm is achieved at 0.55 V, and a stable hydrogen production process is realized at both the cathode and anode. Density functional theory (DFT) studies show that the synergistic effect of Ru and Ce drives: i) the d-band center of RuCe-CuO/CF away from the Fermi energy level; ii) the energy barrier for the C─H cracking of the HC(OH)O intermediate in FOR is lowered, which promotes the formation of H from H, and iii) ΔG tends to 0 (-0.1 eV), optimizing the reaction kinetics of HER. This work provides a new design for an efficient catalyst for dual hydrogen production systems from water splitting.
由于析氧反应(OER)的动力学过程缓慢,水分解制氢受到高电池电压和低能量转换效率的限制。在此,构建了一种电解系统,其中阴极和阳极利用甲醛氧化反应(FOR)而非OER在超低输入电压下共同释放氢气。制备的泡沫铜负载钌铈共掺杂氧化铜纳米管(RuCe-CuO/CF)用作HER-FOR系统的电极材料。在0.55 V时实现了0.8 A cm的电流密度,并且在阴极和阳极均实现了稳定的产氢过程。密度泛函理论(DFT)研究表明,Ru和Ce的协同效应驱动:i)RuCe-CuO/CF的d带中心远离费米能级;ii)FOR中HC(OH)O中间体的C─H裂解的能垒降低,促进了H从H的形成,以及iii)ΔG趋于0(-0.1 eV),优化了HER的反应动力学。这项工作为用于水分解的双产氢系统的高效催化剂提供了一种新设计。