School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Nano Lett. 2024 Aug 21;24(33):10265-10274. doi: 10.1021/acs.nanolett.4c02614. Epub 2024 Aug 8.
Artificial sensory afferent nerves that emulate receptor nanochannel perception and synaptic ionic information processing in chemical environments are highly desirable for bioelectronics. However, challenges persist in achieving life-like nanoscale conformal contact, agile multimodal sensing response, and synaptic feedback with ions. Here, a precisely tuned phase transition poly(-isopropylacrylamide) (PNIPAM) hydrogel is introduced through the water molecule reservoir strategy. The resulting hydrogel with strongly cross-linked networks exhibits excellent mechanical performance (∼2000% elongation) and robust adhesive strength. Importantly, the hydrogel's enhanced ionic conductance and heterogeneous structure of the temperature-sensitive component enable highly sensitive strain information perception (GF = 7.94, response time ∼ 87 ms), temperature information perception (TCR = -1.974%/°C, response time ∼ 270 ms), and low energy consumption synaptic plasticity (42.2 fJ/spike). As a demonstration, a neuromorphic sensing-synaptic system is constructed integrating iontronic strain/temperature sensors with fiber synapses for real-time information sensing, discrimination, and feedback. This work holds enormous potential in bioinspired robotics and bioelectronics.
在生物电子学中,人工感觉传入神经模拟受体纳米通道在化学环境中的感知和突触离子信息处理,这是非常理想的。然而,在实现类似生命的纳米级保形接触、灵活的多模态传感响应和离子突触反馈方面仍然存在挑战。在这里,通过水分子储库策略引入了精确调谐的相变聚(异丙基丙烯酰胺)(PNIPAM)水凝胶。所得的具有强交联网络的水凝胶表现出优异的机械性能(约 2000%的伸长率)和强大的粘附强度。重要的是,水凝胶增强的离子电导率和温度敏感组分的非均相结构使它能够实现高度敏感的应变信息感知(GF = 7.94,响应时间 ∼ 87 ms)、温度信息感知(TCR = -1.974%/°C,响应时间 ∼ 270 ms)和低能耗的突触可塑性(42.2 fJ/spike)。作为一个示范,通过将离子电子应变/温度传感器与纤维突触集成,构建了一个神经形态感应突触系统,用于实时信息感应、识别和反馈。这项工作在仿生机器人和生物电子学方面具有巨大的潜力。