Li Wen, Meng Aoyun, Li Chunsheng, Sun Yan, Zhang Jinfeng, Li Zhen
College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, PR China.
Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, PR China.
J Colloid Interface Sci. 2025 Jan;677(Pt A):704-717. doi: 10.1016/j.jcis.2024.07.240. Epub 2024 Aug 3.
The environmental contamination caused by organophosphorus pesticides (for example, triazophos) is an escalating concern. To mitigate this issue, this study introduces a novel AlSiO/WO (ASO/WO) nanocomposite photocatalyst, which markedly enhances the photocatalytic degradation of triazophos. The optimized nanocomposite material with a 60.0 % ASO loading (60-ASO/WO) achieves a degradation rate of 86.3 % for triazophos within 140.0 min, marginally exceeding 60-ASO/WO (72.6 %) and significantly outperforming individual ASO (65.0 %), WO (59.5 %), and WO (56.2 %). This catalyst retains 88.9 % of its activity after five cycles, showcasing exceptional efficiency and stability. Additionally, its electrochemical surface area (ECSA, 310.0 cm), total organic carbon (TOC, removal rate of 73.7 %), photocurrent, and electrochemical impedance are all optimal. X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and theoretical calculations elucidate the critical role of oxygen vacancies and the S-scheme heterojunction in augmenting charge separation and photocatalytic performance, corroborating the synergistic effect of oxygen defects and the S-scheme. While individual factors can enhance photocatalytic activity, their combination results in a more pronounced effect. Liquid chromatography-mass spectrometry (LCMS) identifies the principal degradation intermediates, including 1-phenyl-3-hydroxy-1, 2, 4-triazole, diethyl thiophosphate, and 3, 5, 6-trichloro-2-pyridinol, underscoring the material's potential in environmental remediation.
有机磷农药(如三唑磷)造成的环境污染问题日益严重。为缓解这一问题,本研究引入了一种新型的AlSiO/WO(ASO/WO)纳米复合光催化剂,该催化剂能显著提高三唑磷的光催化降解效率。负载量为60.0%的ASO的优化纳米复合材料(60-ASO/WO)在140.0分钟内对三唑磷的降解率达到86.3%,略高于60-ASO/WO(72.6%),且明显优于单独的ASO(65.0%)、WO(59.5%)和WO(56.2%)。该催化剂在五个循环后仍保留88.9%的活性,展现出卓越的效率和稳定性。此外,其电化学表面积(ECSA, 310.0 cm)、总有机碳(TOC, 去除率73.7%)、光电流和电化学阻抗均达到最佳状态。X射线光电子能谱(XPS)、电子顺磁共振(EPR)和理论计算阐明了氧空位和S型异质结在增强电荷分离和光催化性能方面的关键作用,证实了氧缺陷和S型异质结的协同效应。虽然单个因素可以提高光催化活性,但它们的组合会产生更显著的效果。液相色谱-质谱联用(LCMS)确定了主要降解中间体,包括1-苯基-3-羟基-1,2,4-三唑、硫代磷酸二乙酯和3,5,6-三氯-2-吡啶醇,突出了该材料在环境修复方面的潜力。