School of Physics, Changchun Normal University, Changchun 130032, China.
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
Int J Mol Sci. 2024 Jun 22;25(13):6871. doi: 10.3390/ijms25136871.
This study presents a pioneering synthesis of a direct Z-scheme YTmSbO/GdYBiNbO heterojunction photocatalyst (YGHP) using an ultrasound-assisted hydrothermal synthesis technique. Additionally, novel photocatalytic nanomaterials, namely YTmSbO and GdYBiNbO, were fabricated via the hydrothermal fabrication technique. A comprehensive range of characterization techniques, including X-ray diffractometry, Fourier-transform infrared spectroscopy, Raman spectroscopy, UV-visible spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray energy-dispersive spectroscopy, fluorescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance, was employed to thoroughly investigate the morphological features, composition, chemical, optical, and photoelectric properties of the fabricated samples. The photocatalytic performance of YGHP was assessed in the degradation of the pesticide acetochlor (AC) and the mineralization of total organic carbon (TOC) under visible light exposure, demonstrating eximious removal efficiencies. Specifically, AC and TOC exhibited removal rates of 99.75% and 97.90%, respectively. Comparative analysis revealed that YGHP showcased significantly higher removal efficiencies for AC compared to the YTmSbO, GdYBiNbO, or N-doped TiO photocatalyst, with removal rates being 1.12 times, 1.21 times, or 3.07 times higher, respectively. Similarly, YGHP demonstrated substantially higher removal efficiencies for TOC than the aforementioned photocatalysts, with removal rates 1.15 times, 1.28 times, or 3.51 times higher, respectively. These improvements could be attributed to the Z-scheme charge transfer configuration, which preserved the preferable redox capacities of YTmSbO and GdYBiNbO. Furthermore, the stability and durability of YGHP were confirmed, affirming its potential for practical applications. Trapping experiments and electron spin resonance analyses identified active species generated by YGHP, namely •OH, •O, and h, allowing for comprehensive analysis of the degradation mechanisms and pathways of AC. Overall, this investigation advances the development of efficient Z-scheme heterostructural materials and provides valuable insights into formulating sustainable remediation strategies for combatting AC contamination.
本研究采用超声辅助水热合成技术,首次合成了直接 Z 型 YTmSbO/GdYBiNbO 异质结光催化剂(YGHP)。此外,还通过水热法制备了新型光催化纳米材料 YTmSbO 和 GdYBiNbO。采用 X 射线衍射仪、傅里叶变换红外光谱仪、拉曼光谱仪、紫外可见分光光度计、X 射线光电子能谱仪、透射电子显微镜、X 射线能谱仪、荧光光谱仪、光电流测试、电化学阻抗谱、紫外光电子能谱和电子顺磁共振等多种表征技术,深入研究了所制备样品的形貌特征、组成、化学、光学和光电性能。在可见光照射下,评估了 YGHP 降解农药乙草胺(AC)和总有机碳(TOC)的矿化性能,表现出优异的去除效率。具体而言,AC 和 TOC 的去除率分别达到 99.75%和 97.90%。对比分析表明,YGHP 对 AC 的去除效率明显高于 YTmSbO、GdYBiNbO 或 N 掺杂 TiO2 光催化剂,去除率分别高 1.12 倍、1.21 倍或 3.07 倍。同样,YGHP 对 TOC 的去除效率也明显高于上述光催化剂,去除率分别高 1.15 倍、1.28 倍或 3.51 倍。这些改进可以归因于 Z 型电荷转移配置,它保留了 YTmSbO 和 GdYBiNbO 的较好的氧化还原能力。此外,还证实了 YGHP 的稳定性和耐久性,证明了其在实际应用中的潜力。捕获实验和电子顺磁共振分析确定了 YGHP 产生的活性物质,即•OH、•O 和 h,从而可以全面分析 AC 的降解机制和途径。总的来说,这项研究推进了高效 Z 型异质结构材料的发展,并为制定可持续的 AC 污染修复策略提供了有价值的见解。