Nalige Sanjana S, Galonska Phillip, Kelich Payam, Sistemich Linda, Herrmann Christian, Vukovic Lela, Kruss Sebastian, Havenith Martina
Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany.
Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA.
Nat Commun. 2024 Aug 8;15(1):6770. doi: 10.1038/s41467-024-50968-9.
Single wall carbon nanotubes (SWCNTs) functionalized with (bio-)polymers such as DNA are soluble in water and sense analytes by analyte-specific changes of their intrinsic fluorescence. Such SWCNT-based (bio-)sensors translate the binding of a molecule (molecular recognition) into a measurable optical signal. This signal transduction is crucial for all types of molecular sensors to achieve high sensitivities. Although there is an increasing number of SWCNT-based sensors, there is yet no molecular understanding of the observed changes in the SWCNT's fluorescence. Here, we report THz experiments that map changes in the local hydration of the solvated SWCNT upon binding of analytes such as the neurotransmitter dopamine or the vitamin riboflavin. The THz amplitude signal serves as a measure of the coupling of charge fluctuations in the SWCNTs to the charge density fluctuations in the hydration layer. We find a linear (inverse) correlation between changes in THz amplitude and the intensity of the change in fluorescence induced by the analytes. Simulations show that the organic corona shapes the local water, which determines the exciton dynamics. Thus, THz signals are a quantitative predictor for signal transduction strength and can be used as a guiding chemical design principle for optimizing fluorescent biosensors.
用(生物)聚合物(如DNA)功能化的单壁碳纳米管(SWCNT)可溶于水,并通过其固有荧光的分析物特异性变化来传感分析物。这种基于单壁碳纳米管的(生物)传感器将分子的结合(分子识别)转化为可测量的光信号。这种信号转导对于所有类型的分子传感器实现高灵敏度至关重要。尽管基于单壁碳纳米管的传感器数量不断增加,但对于单壁碳纳米管荧光中观察到的变化,尚未有分子层面的理解。在此,我们报告了太赫兹实验,该实验绘制了在结合神经递质多巴胺或维生素核黄素等分析物时,溶剂化单壁碳纳米管局部水合作用的变化。太赫兹振幅信号用作单壁碳纳米管中电荷波动与水合层中电荷密度波动耦合的量度。我们发现太赫兹振幅变化与分析物诱导的荧光强度变化之间存在线性(反比)关系。模拟表明,有机冠层塑造了局部水,而局部水决定了激子动力学。因此,太赫兹信号是信号转导强度的定量预测指标,可作为优化荧光生物传感器的指导化学设计原则。