Suppr超能文献

通过Appl1、Sortilin和Syndecan-1生物标志物对前列腺癌病理学进行重新诠释。

Reinterpretation of prostate cancer pathology by Appl1, Sortilin and Syndecan-1 biomarkers.

作者信息

Logan Jessica M, Martini Carmela, Sorvina Alexandra, Johnson Ian R D, Brooks Robert D, Caruso Maria C, Huzzell Chelsea, Moore Courtney R, Karageorgos Litsa, Butler Lisa M, Tewari Prerna, Prabhakaran Sarita, Hickey Shane M, Klebe Sonja, Samaratunga Hemamali, Delahunt Brett, Moretti Kim, O'Leary John J, Brooks Douglas A, Ung Ben S-Y

机构信息

Clinical and Health Sciences, University of South Australia, Bradley Building, City West Campus, North Terrace, Adelaide, SA, 5000, Australia.

Centre for Cancer Biology, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia.

出版信息

Sci Data. 2024 Aug 8;11(1):852. doi: 10.1038/s41597-024-03696-0.

Abstract

The diagnosis of prostate cancer using histopathology is reliant on the accurate interpretation of prostate tissue sections. Current standards rely on the assessment of Haematoxylin and Eosin (H&E) staining, which can be difficult to interpret and introduce inter-observer variability. Here, we present a digital pathology atlas and online resource of prostate cancer tissue micrographs for both H&E and the reinterpretation of samples using a novel set of three biomarkers as an interactive tool, where clinicians and scientists can explore high resolution histopathology from various case studies. The digital pathology prostate cancer atlas when used in conjunction with the biomarkers, will assist pathologists to accurately grade prostate cancer tissue samples.

摘要

使用组织病理学诊断前列腺癌依赖于对前列腺组织切片的准确解读。当前标准依赖苏木精和伊红(H&E)染色评估,这可能难以解读且会引入观察者间的差异。在此,我们展示了一个数字病理图谱和前列腺癌组织显微照片的在线资源,涵盖H&E染色以及使用一组新的三种生物标志物对样本进行重新解读,作为一种交互式工具,临床医生和科学家可以通过各种病例研究探索高分辨率组织病理学。数字病理前列腺癌图谱与生物标志物结合使用时,将有助于病理学家准确分级前列腺癌组织样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0a8/11310308/fe71f00f7f6f/41597_2024_3696_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验