Sundaramoorthy Raj Anand, Ananth Antony Dennis, Seerangan Koteeswaran, Nandagopal Malarvizhi, Balusamy Balamurugan, Selvarajan Shitharth
School of Computing, SASTRA (Deemed to be University), Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
Department of CSE (AI&ML), S.A. Engineering College (Autonomous), Chennai, Tamil Nadu, 600077, India.
Sci Rep. 2024 Aug 8;14(1):18437. doi: 10.1038/s41598-024-68793-x.
In many emerging nations, rapid industrialization and urbanization have led to heightened levels of air pollution. This sudden rise in air pollution, which affects global sustainability and human health, has become a significant concern for citizens and governments. While most current methods for predicting air quality rely on shallow models and often yield unsatisfactory results, our study explores a deep architectural model for forecasting air quality. We employ a sophisticated deep learning structure to develop an advanced system for ambient air quality prediction. We utilize three publicly available databases and real-world data to obtain accurate air quality measurements. These four datasets undergo a data cleaning to yield a consolidated, cleaned dataset. Subsequently, the Fused Eurasian Oystercatcher-Pathfinder Algorithm (FEO-PFA)-a dual optimization method combining the Eurasian Oystercatcher Optimizer (EOO) and Pathfinder Algorithm (PFA)-is applied. This method aids in selecting weighted features, optimizing weights, and choosing the most relevant attributes for optimal results. These optimal features are then incorporated into the Multiscale Depth-wise Separable Adaptive Temporal Convolutional Network (MDS-ATCN) for the ambient Air Quality Prediction (AQP) process. The variables within MDS-ATCN are further refined using the proposed FEO-PFA to enhance predictive accuracy. An empirical analysis is performed to compare the efficacy of our proposed model with traditional methods, underscoring the superior effectiveness of our approach. The average cost function is reduced to 5.5%, the MAE to 28%, and the RMSE to 14% by the suggested method, according to the performance research conducted with regard to all datasets.
在许多新兴国家,快速工业化和城市化导致空气污染水平升高。这种空气污染的突然增加影响全球可持续性和人类健康,已成为公民和政府的重大关切。虽然目前大多数预测空气质量的方法依赖于浅层模型,且往往产生不尽人意的结果,但我们的研究探索了一种用于预测空气质量的深度架构模型。我们采用复杂的深度学习结构来开发一种先进的环境空气质量预测系统。我们利用三个公开可用的数据库和实际数据来获得准确的空气质量测量值。这四个数据集经过数据清理以生成一个合并的、清理后的数据集。随后,应用融合欧亚蛎鹬 - 探路者算法(FEO - PFA)——一种结合欧亚蛎鹬优化器(EOO)和探路者算法(PFA)的双重优化方法。该方法有助于选择加权特征、优化权重并选择最相关的属性以获得最佳结果。然后将这些最佳特征纳入多尺度深度可分离自适应时间卷积网络(MDS - ATCN)用于环境空气质量预测(AQP)过程。MDS - ATCN 中的变量使用所提出的 FEO - PFA 进一步优化以提高预测准确性。进行实证分析以比较我们提出的模型与传统方法的功效,突出我们方法的卓越有效性。根据对所有数据集进行的性能研究,所建议的方法将平均成本函数降低到 5.5%,平均绝对误差降低到 28%,均方根误差降低到 14%。