Huang Jin, Zhou Hangsheng, Zhang Longhao, Zhang Li, Shi Wei, Yang Yingchao, Zhou Jiajia, Zhao Tianyi, Liu Mingjie
Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
National Key Lab of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China.
Nat Commun. 2024 Aug 8;15(1):6747. doi: 10.1038/s41467-024-51187-y.
Polymer nanocomposites with tuning functions are exciting candidates for various applications, and most current research has focused on static mechanical reinforcement. Actually, under service conditions of complex dynamic interference, stable dynamic mechanical properties with high energy dissipation become more critical. However, nanocomposites often exhibit a trade-off between static and dynamic mechanics, because of their contradictory underlying physics between chain crosslinking and chain relaxation. Here, we report a general strategy for constructing ultra-stable dynamic mechanical complex fluid nanocomposites with high energy dissipation by infusing complex fluids into the nanoconfined space. The key is to tailor full-scale polymer dynamics across an exceptionally broad timescale by single-chain confinement. These materials exhibit stable storage modulus (10 ~ 10 MPa) with high energy dissipation (loss factor > 0.4) over a broad frequency range (10 ~ 10 Hz)/temperature range (-35 ~ 85°C). In the loss factor > 0.4 region, their dynamic mechanical stability (rate of modulus change versus temperature (k)) is 10 times higher than that of conventional polymer nanocomposites.
具有调控功能的聚合物纳米复合材料是各种应用中令人兴奋的候选材料,目前大多数研究都集中在静态力学增强方面。实际上,在复杂动态干扰的服役条件下,具有高能量耗散的稳定动态力学性能变得更为关键。然而,由于纳米复合材料在链交联和链松弛之间存在相互矛盾的基础物理原理,它们在静态和动态力学之间往往存在权衡。在此,我们报道了一种通过将复杂流体注入纳米受限空间来构建具有高能量耗散的超稳定动态力学复合流体纳米复合材料的通用策略。关键在于通过单链受限在极宽的时间尺度上调整全尺度聚合物动力学。这些材料在宽频率范围(10⁻²10²Hz)/温度范围(-3585°C)内表现出稳定的储能模量(10~10⁶MPa)和高能量耗散(损耗因子>0.4)。在损耗因子>0.4的区域,它们的动态力学稳定性(模量变化率与温度的关系(k))比传统聚合物纳米复合材料高10倍。