Suppr超能文献

使用大规模神经影像学在精神病学中实现可重现发现的当前最佳实践和未来机会。

Current best practices and future opportunities for reproducible findings using large-scale neuroimaging in psychiatry.

机构信息

Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90292, USA.

Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.

出版信息

Neuropsychopharmacology. 2024 Nov;50(1):37-51. doi: 10.1038/s41386-024-01938-8. Epub 2024 Aug 8.

Abstract

Research into the brain basis of psychopathology is challenging due to the heterogeneity of psychiatric disorders, extensive comorbidities, underdiagnosis or overdiagnosis, multifaceted interactions with genetics and life experiences, and the highly multivariate nature of neural correlates. Therefore, increasingly larger datasets that measure more variables in larger cohorts are needed to gain insights. In this review, we present current "best practice" approaches for using existing databases, collecting and sharing new repositories for big data analyses, and future directions for big data in neuroimaging and psychiatry with an emphasis on contributing to collaborative efforts and the challenges of multi-study data analysis.

摘要

由于精神障碍的异质性、广泛的共病、诊断不足或过度诊断、与遗传和生活经历的多方面相互作用以及神经相关性的高度多变量性质,对精神病理学的大脑基础的研究具有挑战性。因此,需要越来越大的数据集,以便在更大的队列中测量更多的变量,从而获得更深入的见解。在这篇综述中,我们介绍了使用现有数据库的当前“最佳实践”方法,以及为大数据分析收集和共享新存储库的方法,以及神经影像学和精神病学中大数 据的未来方向,重点是为协作努力和多研究数据分析的挑战做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167e/11526024/87838bf65051/41386_2024_1938_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验